John B. Cosgrave

Last updated

Dr. John B. Cosgrave JBC1.JPG
Dr. John B. Cosgrave

Dr. John B. Cosgrave (born 5 January 1946) is an Irish mathematician specialising in number theory. Born in Bailieborough, [1] County Cavan, he was educated at Royal Holloway College, London, he lectured in Carysfort College (Blackrock, Dublin) and St Patrick's College of Education (Drumcondra).

Contents

Other

In January 1999, while preparing some work for his students, he identified a highly structured prime number with exactly two thousand digits. Dubbing this prime a millennium prime, he wrote an email about it to a niece and nephew, which was subsequently published by Folding Landscapes, [2] the publishing house of the cartographer Tim Robinson. He donated his author royalties to the Irish Cancer Society, [3] and subsequently wrote an Irishman's Diary [4] column about it for the Irish Times newspaper.

In July 1999 – while a participant in the Proth Search Group – he became the discoverer of the then-largest known composite Fermat number, [5] a record which his St. Patrick's College (Drumcondra) based Proth-Gallot Group twice broke in 2003, the 1999 record having stood until then. [6] The third of those records continued to stand until it was broken in June 2011.

Selected publications

See also

Related Research Articles

<span class="mw-page-title-main">Number theory</span> Mathematics of integer properties

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers, or defined as generalizations of the integers.

<span class="mw-page-title-main">Prime number</span> Evenly divided only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Sophie Germain</span> French mathematician, physicist, and philosopher

Marie-Sophie Germain was a French mathematician, physicist, and philosopher. Despite initial opposition from her parents and difficulties presented by society, she gained education from books in her father's library, including ones by Euler, and from correspondence with famous mathematicians such as Lagrange, Legendre, and Gauss. One of the pioneers of elasticity theory, she won the grand prize from the Paris Academy of Sciences for her essay on the subject. Her work on Fermat's Last Theorem provided a foundation for mathematicians exploring the subject for hundreds of years after. Because of prejudice against her sex, she was unable to make a career out of mathematics, but she worked independently throughout her life. Before her death, Gauss had recommended that she be awarded an honorary degree, but that never occurred. On 27 June 1831, she died from breast cancer. At the centenary of her life, a street and a girls’ school were named after her. The Academy of Sciences established the Sophie Germain Prize in her honour.

In number theory, Euler's theorem states that, if n and a are coprime positive integers, and is Euler's totient function, then a raised to the power is congruent to 1 modulo n; that is

In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1. In this case, is unsolvable. Germain’s proof, however, remained unfinished. Through her attempts to solve Fermat's Last Theorem, Germain developed a result now known as Germain's Theorem which states that if p is an odd prime and 2p + 1 is also prime, then p must divide x, y, or z. Otherwise, . This case where p does not divide x, y, or z is called the first case. Sophie Germain’s work was the most progress achieved on Fermat’s last theorem at that time. Later work by Kummer and others always divided the problem into first and second cases. Sophie Germain primes and safe primes have applications in public key cryptography and primality testing. It has been conjectured that there are infinitely many Sophie Germain primes, but this remains unproven.

In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form

In number theory, a Wieferich prime is a prime number p such that p2 divides 2p − 1 − 1, therefore connecting these primes with Fermat's little theorem, which states that every odd prime p divides 2p − 1 − 1. Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians.

In number theory, a Wilson prime is a prime number such that divides , where "" denotes the factorial function; compare this with Wilson's theorem, which states that every prime divides . Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson, although it had been stated centuries earlier by Ibn al-Haytham.

<span class="mw-page-title-main">Constructible polygon</span> Regular polygon that can be constructed with compass and straightedge

In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.

<span class="mw-page-title-main">St Patrick's College, Dublin</span> Former college of education, merged into Dublin City University in 2016

St Patrick's College, often known as St Pat's, was a third level institution in Ireland, the leading function of which was as the country's largest primary teacher training college, which had at one time up to 2,000 students. Founded in Drumcondra, in the northern suburbs of Dublin, in 1875, with a Roman Catholic ethos, it offered a number of undergraduate courses, primarily in primary education and arts, and in time postgraduate courses too, mostly in education and languages.

<i>Disquisitiones Arithmeticae</i> Book written by Carl Friedrich Gauss

The Disquisitiones Arithmeticae is a textbook of number theory written in Latin by Carl Friedrich Gauss in 1798 when Gauss was 21 and first published in 1801 when he was 24. It is notable for having had a revolutionary impact on the field of number theory as it not only made the field truly rigorous and systematic but also paved the path for modern number theory. In this book Gauss brought together and reconciled results in number theory obtained by mathematicians such as Fermat, Euler, Lagrange, and Legendre and added many profound and original results of his own.

Vorlesungen über Zahlentheorie is the name of several different textbooks of number theory. The best known was written by Peter Gustav Lejeune Dirichlet and Richard Dedekind, and published in 1863. Others were written by Leopold Kronecker, Edmund Landau, and Helmut Hasse. They all cover elementary number theory, Dirichlet's theorem, quadratic fields and forms, and sometimes more advanced topics.

<span class="mw-page-title-main">Gerhard Frey</span> German mathematician

Gerhard Frey is a German mathematician, known for his work in number theory. Following an original idea of Hellegouarch, he developed the notion of Frey–Hellegouarch curves, a construction of an elliptic curve from a purported solution to the Fermat equation, that is central to Wiles's proof of Fermat's Last Theorem.

<span class="mw-page-title-main">Pierre de Fermat</span> French mathematician and lawyer

Pierre de Fermat was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' Arithmetica. He was also a lawyer at the Parlement of Toulouse, France.

François Proth was a French self-taught mathematician farmer who lived in Vaux-devant-Damloup near Verdun, France.

<span class="mw-page-title-main">Fermat's Last Theorem</span> 17th-century conjecture proved by Andrew Wiles in 1994

In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.

This is a timeline of pure and applied mathematics history. It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic" stage, in which comprehensive notational systems for formulas are the norm.

In mathematics, the Pocklington–Lehmer primality test is a primality test devised by Henry Cabourn Pocklington and Derrick Henry Lehmer. The test uses a partial factorization of to prove that an integer is prime.

Lawrence Clinton Washington is an American mathematician at the University of Maryland who specializes in number theory.

References

  1. https://johnbcosgrave.com/archive/biograph.htm
  2. "A Prime for the Millennium". Iol.ie. 6 January 1999. Retrieved 17 August 2012.
  3. "Millennium prime booklet". Staff.spd.dcu.ie. Archived from the original on 13 August 2012. Retrieved 17 August 2012.
  4. "Irish Times articles". Staff.spd.dcu.ie. Archived from the original on 13 August 2012. Retrieved 17 August 2012.
  5. "Fermat Number Record". Staff.spd.dcu.ie. 23 July 1999. Archived from the original on 13 August 2012. Retrieved 17 August 2012.
  6. "Proth-Gallot Group (SPD)". Staff.spd.dcu.ie. 12 October 2000. Archived from the original on 13 August 2012. Retrieved 17 August 2012.