John Hogan (mathematician)

Last updated

S. John Hogan is a professor of Applied Mathematics and leader of the "Applied Nonlinear Mathematics Group" in the Department of Engineering Mathematics, University of Bristol. He is known for his work in numerous applications of non-linear dynamics including water waves liquid crystals.

Contents

Hogan is principal investigator on several large EPSRC grants, in 2008 totalling around £6M [1] – an unusually high total for a UK mathematician. These include the "Bristol Centre for Complexity Sciences", the "Bristol Centre for Applied Nonlinear Mathematics", "Applied Nonlinear Mathematics: Making it Real". [2]

Recent publications

Related Research Articles

<span class="mw-page-title-main">Chaos theory</span> Field of mathematics and science based on non-linear systems and initial conditions

Chaos theory is an interdisciplinary area of scientific study and branch of mathematics. It focuses on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions. These were once thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnection, constant feedback loops, repetition, self-similarity, fractals and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state. A metaphor for this behavior is that a butterfly flapping its wings in Brazil can cause a tornado in Texas.

<span class="mw-page-title-main">Van der Pol oscillator</span> Oscillating dynamical system with nonlinear damping

In the study of dynamical systems, the van der Pol oscillator is a non-conservative, oscillating system with non-linear damping. It evolves in time according to the second-order differential equation where x is the position coordinate—which is a function of the time t—and μ is a scalar parameter indicating the nonlinearity and the strength of the damping.

<span class="mw-page-title-main">Chua's circuit</span> Electronic circuit that behaves chaotically

Chua's circuit is a simple electronic circuit that exhibits classic chaotic behavior. This means roughly that it is a "nonperiodic oscillator"; it produces an oscillating waveform that, unlike an ordinary electronic oscillator, never "repeats". It was invented in 1983 by Leon O. Chua, who was a visitor at Waseda University in Japan at that time. The ease of construction of the circuit has made it a ubiquitous real-world example of a chaotic system, leading some to declare it "a paradigm for chaos".

In dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long for the numerical values visited by the system to repeat themselves.

<span class="mw-page-title-main">René Thomas (biologist)</span>

René Thomas (14 May 1928 - 9 January 2017 was a Belgian scientist. His research included DNA biochemistry and biophysics, genetics, mathematical biology, and finally dynamical systems. He devoted his life to the deciphering of key logical principles at the basis of the behaviour of biological systems, and more generally to the generation of complex dynamical behaviour. He was professor and laboratory head at the Université Libre de Bruxelles, and taught and inspired several generations of researchers.

In theoretical computer science, chaos computing is the idea of using chaotic systems for computation. In particular, chaotic systems can be made to produce all types of logic gates and further allow them to be morphed into each other.

Stephen Ray Wiggins is a Cherokee-American applied mathematics researcher and distinguished educator, also of British heritage, best known for his contributions in nonlinear dynamics, chaos theory and nonlinear phenomena. His wide contributions include Lagrangian aspects of fluid dynamics and reaction dynamics in theoretical chemistry.

<span class="mw-page-title-main">Stellar pulsation</span>

Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.

Valentin Afraimovich was a Soviet, Russian and Mexican mathematician. He made contributions to dynamical systems theory, qualitative theory of ordinary differential equations, bifurcation theory, concept of attractor, strange attractors, space-time chaos, mathematical models of non-equilibrium media and biological systems, travelling waves in lattices, complexity of orbits and dimension-like characteristics in dynamical systems.

In the bifurcation theory, a bounded oscillation that is born without loss of stability of stationary set is called a hidden oscillation. In nonlinear control theory, the birth of a hidden oscillation in a time-invariant control system with bounded states means crossing a boundary, in the domain of the parameters, where local stability of the stationary states implies global stability. If a hidden oscillation attracts all nearby oscillations, then it is called a hidden attractor. For a dynamical system with a unique equilibrium point that is globally attractive, the birth of a hidden attractor corresponds to a qualitative change in behaviour from monostability to bi-stability. In the general case, a dynamical system may turn out to be multistable and have coexisting local attractors in the phase space. While trivial attractors, i.e. stable equilibrium points, can be easily found analytically or numerically, the search of periodic and chaotic attractors can turn out to be a challenging problem.

Guanrong Chen (陈关荣) or Ron Chen is a Chinese mathematician who made contributions to Chaos theory. He has been the chair professor and the founding director of the Centre for Chaos and Complex Networks at the City University of Hong Kong since 2000. Prior to that, he was a tenured full professor at the University of Houston, Texas. Chen was elected Member of the Academy of Europe in 2014, elected Fellow of The World Academy of Sciences in 2015, and elected IEEE Fellow in 1997. He is currently the editor-in-chief for the International Journal of Bifurcation and Chaos.

<span class="mw-page-title-main">Bifurcation memory</span>

Bifurcation memory is a generalized name for some specific features of the behaviour of the dynamical system near the bifurcation. An example is the recurrent neuron memory.

<span class="mw-page-title-main">Edward Ott</span> American physicist

Edward Ott is an American physicist most noted for his contributions to the development of chaos theory.

Chaotic cryptology is the application of mathematical chaos theory to the practice of cryptography, the study or techniques used to privately and securely transmit information with the presence of a third-party or adversary. Since first being investigated by Robert Matthews in 1989, the use of chaos in cryptography has attracted much interest. However, long-standing concerns about its security and implementation speed continue to limit its implementation.

Hinke Maria Osinga is a Dutch mathematician and an expert in dynamical systems. She works as a professor of applied mathematics at the University of Auckland in New Zealand. As well as for her research, she is known as a creator of mathematical art.

<span class="mw-page-title-main">Albert C.J. Luo</span> Mechanical engineering researcher

Albert C.J. Luo is a mechanical engineering researcher who has been serving as a distinguished research professor at Southern Illinois University Edwardsville in Illinois since 1998.

<span class="mw-page-title-main">Kuramoto–Sivashinsky equation</span> Partial differential equation

In mathematics, the Kuramoto–Sivashinsky equation is a fourth-order nonlinear partial differential equation. It is named after Yoshiki Kuramoto and Gregory Sivashinsky, who derived the equation in the late 1970s to model the diffusive–thermal instabilities in a laminar flame front. The equation was independently derived by G. M. Homsy and A. A. Nepomnyashchii in 1974, in connection with the stability of liquid film on an inclined plane and by R. E. LaQuey et. al. in 1975 in connection with trapped-ion instability. The Kuramoto–Sivashinsky equation is known for its chaotic behavior.

Muthusamy Lakshmanan is an Indian theoretical physicist currently working as Professor of Eminence at the Department of Nonlinear Dynamics of Bharathidasan University. Presently he is the DST-SERB National Science Chair awarded by the Science and Engineering Research Board, Department of Science and Technology. He has held several research fellowships which included Raja Ramanna fellowship of the Department of Atomic Energy, Alexander von Humboldt fellowship, Japan Society for the Promotion of Science fellowship, Royal Society Nuffield Foundation fellowship, and NASI-Senior Scientist Platinum Jubilee Fellowship. In the year 2021, on August 15, he was conferred with the Dr. A. P. J Abdul Kalam Award by the Government of Tamil Nadu.

Nikolay Vladimirovich Kuznetsov is a specialist in nonlinear dynamics and control theory.

<span class="mw-page-title-main">Polina Landa</span> Russian physicist

Polina Solomonovna Landa was a Russian physicist.

References

  1. EPSRC Grants on the web,, accessed 18 January 2008
  2. "£2m to help make mathematics real". 7 April 2007. Retrieved 25 July 2024.