Kaminsky catalyst

Last updated

A Kaminsky catalyst is a catalytic system for alkene polymerization. [1] Kaminsky catalysts are based on metallocenes of group 4 transition metals (Ti, Zr, Hf) activated with methylaluminoxane (MAO). These and other innovations have inspired development of new classes of catalysts that in turn led to commercialization of novel engineering polyolefins. [2]

Contents

A constrained geometry organotitanium complex in the (inactive) chloride form ConstrainedGeomCmpx.png
A constrained geometry organotitanium complex in the (inactive) chloride form

Catalyst development

The catalyst is named after German chemist Walter Kaminsky, who first described it in 1980 along with Hansjörg Sinn and others. [3] [4] Prior to Kaminsky's work, titanium chlorides supported on various materials were widely used (and still are) as heterogeneous catalysts for alkene polymerization. These halides are typically activated by treatment with trimethylaluminium. Kaminsky discovered that titanocene and related complexes emulated some aspects of these Ziegler–Natta catalysts but with low activity. He subsequently found that high activity could be achieved upon activation of these metallocenes with methylaluminoxane (MAO). The MAO serves two roles: (i) alkylation of the metallocene halide and (ii) abstraction of an anionic ligand (chloride or methyl) to give an electrophilic catalyst with a labile coordination site. [1] [5]

Ligand design

Kaminsky's discovery of well-defined, high activity homogeneous catalysts led to many innovations in the design of novel cyclopentadienyl ligands. These innovations include ansa-metallocenes, Cs-symmetric fluorenyl-Cp ligands, [6] constrained geometry catalysts, [7] Some Kaminsky-inspired catalysts use of chiral metallocenes that have bridged cyclopentadienyl rings. These innovations made possible highly stereoselective (or stereoregular) polymerization of α-olefins, some of which have been commercialized. [2]

Using metallocene 1 for polymerization of propene gives atactic polypropylene, while C2 symmetric metallocene 2 and Cs symmetric metallocene 3 catalytic systems produce isotactic polymer and syndiotactic polymer, respectively. Metallocenes3.png
Using metallocene 1 for polymerization of propene gives atactic polypropylene, while C2 symmetric metallocene 2 and Cs symmetric metallocene 3 catalytic systems produce isotactic polymer and syndiotactic polymer, respectively.

Related Research Articles

<span class="mw-page-title-main">Metallocene</span>

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

A Ziegler–Natta catalyst, named after Karl Ziegler and Giulio Natta, is a catalyst used in the synthesis of polymers of 1-alkenes (alpha-olefins). Two broad classes of Ziegler–Natta catalysts are employed, distinguished by their solubility:

In polymer chemistry, living polymerization is a form of chain growth polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is also much larger than the rate of chain propagation. The result is that the polymer chains grow at a more constant rate than seen in traditional chain polymerization and their lengths remain very similar. Living polymerization is a popular method for synthesizing block copolymers since the polymer can be synthesized in stages, each stage containing a different monomer. Additional advantages are predetermined molar mass and control over end-groups.

<span class="mw-page-title-main">Cyclopentadienyl complex</span> Coordination complex of a metal and cyclopentadienyl groups

A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups. Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring.

A post-metallocene catalyst is a kind of catalyst for the polymerization of olefins, i.e., the industrial production of some of the most common plastics. "Post-metallocene" refers to a class of homogeneous catalysts that are not metallocenes. This area has attracted much attention because the market for polyethylene, polypropylene, and related copolymers is large. There is a corresponding intense market for new processes as indicated by the fact that, in the US alone, 50,000 patents were issued between 1991-2007 on polyethylene and polypropylene.

Methylaluminoxane, commonly called MAO, is a mixture of organoaluminium compounds with the approximate formula (Al(CH3)O)n. It is usually encountered as a solution in (aromatic) solvents, commonly toluene but also xylene, cumene, or mesitylene, Used in large excess, it activates precatalysts for alkene polymerization.

<span class="mw-page-title-main">Olefin metathesis</span> Organic reaction involving the breakup and reassembly of alkene double bonds

In organic chemistry, olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative organic reactions. For their elucidation of the reaction mechanism and their discovery of a variety of highly active catalysts, Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock were collectively awarded the 2005 Nobel Prize in Chemistry.

Coordination polymerisation is a form of polymerization that is catalyzed by transition metal salts and complexes.

Walter Kaminsky is a German chemist who specializes in olefin polymerization and plastic recycling. He discovered the high activity of Group 4 metallocene/methylaluminoxane (MAO) mixtures as catalysts for olefin polymerization in 1980.

<span class="mw-page-title-main">Constrained geometry complex</span>

In organometallic chemistry, a "constrained geometry complex" (CGC) is a kind of catalyst used for the production of polyolefins such as polyethylene and polypropylene. The catalyst was one of the first major departures from metallocene-based catalysts and ushered in much innovation in the development of new plastics.

The Cossee–Arlman mechanism in polymer chemistry is the main pathway for the formation of C–C bonds in the polymerization of alkenes. The mechanism features an intermediate coordination complex that contains both the growing polymer chain and the monomer (alkene). These ligands combine within the coordination sphere of the metal to form a polymer chain that is elongated by two carbons.

<span class="mw-page-title-main">Organozirconium and organohafnium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

<span class="mw-page-title-main">Organomolybdenum chemistry</span> Chemistry of compounds with Mo-C bonds

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common.

<i>Ansa</i>-metallocene Organometallic compound

An ansa-metallocene is a type of organometallic compound containing two cyclopentadienyl ligands that are linked by a bridging group such that both cyclopentadienyl groups are bound to the same metal. The link prevents rotation of the cyclopentadienyl ligand and often modifies the structure and reactivity of the metal center. Some ansa-metallocenes are active in Ziegler-Natta catalysis, although none are used commercially. The term ansa-metallocene was coined by Lüttringhaus and Kullick to describe alkylidene-bridged ferrocenes, which were developed in the 1950s.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

Diiminopyridines are a class of diimine ligands. They featuring a pyridine nucleus with imine sidearms appended to the 2,6–positions. The three nitrogen centres bind metals in a tridentate fashion, forming pincer complexes. Diiminopyridines are notable as non-innocent ligand that can assume more than one oxidation state. Complexes of DIPs participate in a range of chemical reactions, including ethylene polymerization, hydrosilylation, and hydrogenation.

Functionalized polyolefins are olefin polymers with polar and nonpolar functionalities attached onto the polymer backbone. There has been an increased interest in functionalizing polyolefins due to their increased usage in everyday life. Polyolefins are virtually ubiquitous in everyday life, from consumer food packaging to biomedical applications; therefore, efforts must be made to study catalytic pathways towards the attachment of various functional groups onto polyolefins in order to affect the material's physical properties.

<span class="mw-page-title-main">Lanthanocene</span>

A lanthanocene is a type of metallocene compound that contains an element from the lanthanide series. The most common lanthanocene complexes contain two cyclopentadienyl anions and an X type ligand, usually hydride or alkyl ligand.

<span class="mw-page-title-main">Transition metal phosphinimide complexes</span>

Transition metal phosphinimide complexes are metal complexes that contain phosphinimide ligands of the general formula NPR3 (R = organic substituent). Several coordination modes have been observed, including terminal and various bridging geometries. In the terminal bonding mode the M-N=P core is usually linear but some are quite bent. The preferred coordination type varies with the oxidation state and coligands on the metal and the steric and electronic properties of the R groups on phosphorus. Many transition metal phosphinimide complexes have been well-developed and, more recently, main group phosphinimide complexes have been synthesized.

References

  1. 1 2 Walter Kaminsky (1998). "Highly Active Metallocene Catalysts For Olefin Polymerization". Journal of the Chemical Society, Dalton Transactions (9): 1413–1418. doi:10.1039/A800056E. S2CID   52378598.
  2. 1 2 Klosin, J.; Fontaine, P. P.; Figueroa, R. (2015). "Development of Group Iv Molecular Catalysts for High Temperature Ethylene-Α-Olefin Copolymerization Reactions". Accounts of Chemical Research. 48 (7): 2004–2016. doi: 10.1021/acs.accounts.5b00065 . PMID   26151395.
  3. Kaminsky, Walter (2004-08-15). "The discovery of metallocene catalysts and their present state of the art". Journal of Polymer Science Part A: Polymer Chemistry. 42 (16): 3911–3921. doi:10.1002/pola.20292. ISSN   0887-624X.
  4. Sinn, Hansjörg; Kaminsky, Walter; Vollmer, Hans‐Jürgen; Woldt, Rüdiger (1980). ""Living Polymers" on Polymerization with Extremely Productive Ziegler Catalysts". Angewandte Chemie International Edition in English. 19 (5): 390–392. doi:10.1002/anie.198003901. ISSN   0570-0833.
  5. Chen, E. Y.-X.; Marks, T. J. (2000). "Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure-Activity Relationships". Chem. Rev. 100 (4): 1391–1434. doi:10.1021/cr980462j. PMID   11749269. S2CID   26845820.
  6. Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. (1988). "Syndiospecific propylene polymerizations with Group IVB metallocenes". Journal of the American Chemical Society. 110 (18): 6255–6256. doi:10.1021/ja00226a056. PMID   22148816.
  7. Shapiro P. J., Bunel E., Scbaefer W. P., Bercaw J. E. (1990). "Scandium Complex [{(η5-C5Me4)Me2Si(η1-NCMe3)}(PMe3)ScH]2: A Unique Example of a Single-Component α-Olefin Polymerization Catalyst". Organometallics. 9: 867–869. doi:10.1021/om00117a055.{{cite journal}}: CS1 maint: multiple names: authors list (link)