Karel Lambert

Last updated
Karel Lambert
Born1928 (age 9596)
NationalityAmerican
Occupations
  • Philosopher
  • logician
Known forCoining the term free logic

Karel Lambert (born 1928) is an American philosopher and logician at the University of California, Irvine and the University of Salzburg. He has written extensively on the subject of free logic, a term which he coined. [1] [2]

Contents

Lambert's law

Lambert's law is the major principle in any free definite description theory that says: For all x, x = the y (A) if and only if (A(x/y) & for all y (if A then y = x)).

Free logic itself is an adjustment of a given standard predicate logic such as to relieve it of existential assumptions, and so make it a free logic. Taking Bertrand Russell's predicate logic in his Principia Mathematica as standard, one replaces universal instantiation, , with universal specification . Thus universal statements, like "All men are mortal," or "Everything is a unicorn," do not presuppose that there are men or that there is anything. These would be symbolized, with the appropriate predicates, as and , which in Principia Mathematica entail and , but not in free logic. The truth of these last statements, when used in a free logic, depend on the domain of quantification, which may be the null set.

Published works

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

<i>Principia Mathematica</i> Book on the foundations of mathematics (1910–13, 1925–27)

The Principia Mathematica is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925–1927, it appeared in a second edition with an important Introduction to the Second Edition, an Appendix A that replaced ✱9 and all-new Appendix B and Appendix C. PM was conceived as a sequel to Russell's 1903 The Principles of Mathematics, but as PM states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of Principles of Mathematics... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions."

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

In mathematical logic, Russell's paradox is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, as he told Hilbert and Richard Dedekind by letter.

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.

In formal semantics and philosophy of language, a definite description is a denoting phrase in the form of "the X" where X is a noun-phrase or a singular common noun. The definite description is proper if X applies to a unique individual or object. For example: "the first person in space" and "the 42nd President of the United States of America", are proper. The definite descriptions "the person in space" and "the Senator from Ohio" are improper because the noun phrase X applies to more than one thing, and the definite descriptions "the first man on Mars" and "the Senator from Washington D.C." are improper because X applies to nothing. Improper descriptions raise some difficult questions about the law of excluded middle, denotation, modality, and mental content.

Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the nonstandard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, Nelson's approach modifies the axiomatic foundations through syntactic enrichment. Thus, the axioms introduce a new term, "standard", which can be used to make discriminations not possible under the conventional ZFC axioms for sets. Thus, IST is an enrichment of ZFC: all axioms of ZFC are satisfied for all classical predicates, while the new unary predicate "standard" satisfies three additional axioms I, S, and T. In particular, suitable nonstandard elements within the set of real numbers can be shown to have properties that correspond to the properties of infinitesimal and unlimited elements.

<i>Begriffsschrift</i> 1879 book on logic by Gottlob Frege

Begriffsschrift is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book.

A free logic is a logic with fewer existential presuppositions than classical logic. Free logics may allow for terms that do not denote any object. Free logics may also allow models that have an empty domain. A free logic with the latter property is an inclusive logic.

Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity. As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive predicates are "betweenness" and "congruence". The system contains infinitely many axioms.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

"On Denoting" is an essay by Bertrand Russell. It was published in the philosophy journal Mind in 1905. In it, Russell introduces and advocates his theory of denoting phrases, according to which definite descriptions and other "denoting phrases ... never have any meaning in themselves, but every proposition in whose verbal expression they occur has a meaning." This theory later became the basis for Russell's descriptivism with regard to proper names, and his view that proper names are "disguised" or "abbreviated" definite descriptions.

In semantics, donkey sentences are sentences that contain a pronoun with clear meaning but whose syntactic role in the sentence poses challenges to linguists. Such sentences defy straightforward attempts to generate their formal language equivalents. The difficulty is with understanding how English speakers parse such sentences.

Czesław Lejewski was a Polish philosopher and logician, and a member of the Lwow-Warsaw School of Logic. He studied under Jan Łukasiewicz and Karl Popper in the London School of Economics, and W. V. O. Quine.

In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier in the first order formula expresses that everything in the domain satisfies the property denoted by . On the other hand, the existential quantifier in the formula expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable.

Bounded arithmetic is a collective name for a family of weak subtheories of Peano arithmetic. Such theories are typically obtained by requiring that quantifiers be bounded in the induction axiom or equivalent postulates. The main purpose is to characterize one or another class of computational complexity in the sense that a function is provably total if and only if it belongs to a given complexity class. Further, theories of bounded arithmetic present uniform counterparts to standard propositional proof systems such as Frege system and are, in particular, useful for constructing polynomial-size proofs in these systems. The characterization of standard complexity classes and correspondence to propositional proof systems allows to interpret theories of bounded arithmetic as formal systems capturing various levels of feasible reasoning.

References

  1. Lambert, Karel (1960). "The Definition of E! in Free Logic". Abstracts: The International Congress for Logic, Methodology and Philosophy of Science. Palo Alto, CA: Stanford University Press.
  2. Bengel, Erick (6 Apr 2016). "Everyday People: Hammond resident is a major figure in logic". Daily Astorian. Retrieved 14 April 2016.