Kayla C. King

Last updated

Kayla C. King is Professor of Evolutionary Ecology at University of Oxford, specialising in how interactions between hosts and parasites show evolutionary change.

Contents

Career

Kayla Christina King studied B. Sc. Zoology at University of British Columbia, Canada from 2000 to 2004 followed by a master's degree in Biology at Concordia University, graduating in 2006. She then commenced study for her doctorate at Indiana University Bloomington, USA that was awarded in 2011. She then moved to University of Liverpool, UK, for 2 years, partly financed through a Royal Society Newton Fellowship, followed by moving in 2013 to the University of Oxford. [1]

In 2019 she was appointed professor of evolutionary ecology at University of Oxford, UK. She is also a tutorial fellow at Christ Church college. [1]

Her research into evolutionary biology makes use of host-parasite interactions between a wide range of microbial and eukaryotic parasites in both natural and laboratory situations. [2] These have included systems that are relevant to diseases of humans such as malaria and dengue and may assist in their biological control. [3] However, she has also worked with non-pathogenic systems such as the normal microbiome of snails. [4] [5] Her research applies theoretical models as well as laboratory methods including genomics to study the interactions. [1]

Publications

King is the author or co-author of over 40 scientific publications. These include:

Related Research Articles

<span class="mw-page-title-main">Microbial ecology</span> Study of the relationship of microorganisms with their environment

Microbial ecology is the ecology of microorganisms: their relationship with one another and with their environment. It concerns the three major domains of life—Eukaryota, Archaea, and Bacteria—as well as viruses.

Paul W. Ewald is an evolutionary biologist, specializing in the evolutionary ecology of parasitism, evolutionary medicine, agonistic behavior, and pollination biology. He is the author of Evolution of Infectious Disease (1994) and Plague Time: The New Germ Theory of Disease (2002), and is currently director of the program in Evolutionary Medicine at the Biology Department of the University of Louisville.

Microbial population biology is the application of the principles of population biology to microorganisms.

<span class="mw-page-title-main">Red Queen hypothesis</span> Concept in evolutionary biology

The Red Queen hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.

<span class="mw-page-title-main">Max Planck Institute for Infection Biology</span>

The Max Planck Institute for Infection Biology (MPIIB) is a non-university research institute of the Max Planck Society located in the heart of Berlin in Berlin-Mitte. It was founded in 1993. Arturo Zychlinsky is currently the Managing Director. The MPIIB is divided into nine research groups, two partner groups and two Emeritus Groups of the founding director Stefan H. E. Kaufmann and the director emeritus Thomas F. Meyer. The department "Regulation in Infection Biology" headed by 2020 Nobel laureate Emmanuelle Charpentier was hived off as an independent research center in May 2018. The Max Planck Unit for the Science of Pathogens is now administratively independent of the Max Planck Institute for Infection Biology. In October 2019, Igor Iatsenko and Matthieu Domenech de Cellès established their research groups at the institute, Mark Cronan started his position as research group leader in March 2020. Silvia Portugal joined the institute in June 2020 as Lise Meitner Group Leader. Two more research groups where added in 2020, Felix M. Key joined in September and Olivia Majer in October, completing the reorganization of the Max Planck Institute for Infection Biology.

<span class="mw-page-title-main">Host–parasite coevolution</span> Mutually adaptive genetic change of a host and a parasite

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

In biology, a pathogen in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

The host–pathogen interaction is defined as how microbes or viruses sustain themselves within host organisms on a molecular, cellular, organismal or population level. This term is most commonly used to refer to disease-causing microorganisms although they may not cause illness in all hosts. Because of this, the definition has been expanded to how known pathogens survive within their host, whether they cause disease or not.

<span class="mw-page-title-main">Alexandra Worden</span> American microbiologist

Alexandra (Alex) Z. Worden is a microbial ecologist and genome scientist known for her expertise in the ecology and evolution of ocean microbes and their influence on global biogeochemical cycles.

<span class="mw-page-title-main">Root microbiome</span>

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

<span class="mw-page-title-main">Holobiont</span> Host and associated species living as a discrete ecological unit

A holobiont is an assemblage of a host and the many other species living in or around it, which together form a discrete ecological unit, though there is controversy over this discreteness. The components of a holobiont are individual species or bionts, while the combined genome of all bionts is the hologenome. The holobiont concept was initially introduced by the German theoretical biologist Adolf Meyer-Abich in 1943, and then apparently independently by Dr. Lynn Margulis in her 1991 book Symbiosis as a Source of Evolutionary Innovation. The concept has evolved since the original formulations. Holobionts include the host, virome, microbiome, and any other organisms which contribute in some way to the functioning of the whole. Well-studied holobionts include reef-building corals and humans.

Hologenomics is the omics study of hologenomes. A hologenome is the whole set of genomes of a holobiont, an organism together with all co-habitating microbes, other life forms, and viruses. While the term hologenome originated from the hologenome theory of evolution, which postulates that natural selection occurs on the holobiont level, hologenomics uses an integrative framework to investigate interactions between the host and its associated species. Examples include gut microbe or viral genomes linked to human or animal genomes for host-microbe interaction research. Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of marine sponges.

<span class="mw-page-title-main">Branches of microbiology</span>

The branches of microbiology can be classified into pure and applied sciences. Microbiology can be also classified based on taxonomy, in the cases of bacteriology, mycology, protozoology, and phycology. There is considerable overlap between the specific branches of microbiology with each other and with other disciplines, and certain aspects of these branches can extend beyond the traditional scope of microbiology In general the field of microbiology can be divided in the more fundamental branch and the applied microbiology (biotechnology). In the more fundamental field the organisms are studied as the subject itself on a deeper (theoretical) level. Applied microbiology refers to the fields where the micro-organisms are applied in certain processes such as brewing or fermentation. The organisms itself are often not studied as such, but applied to sustain certain processes.

<span class="mw-page-title-main">Dieter Ebert</span>

Dieter Ebert is professor for Zoology and Evolutionary Biology at the Zoological Institute at the University of Basel in Basel, Switzerland. He is an evolutionary ecologist and geneticist, known for his research on host–pathogen interaction and coevolution, mainly using the model system Daphnia and its parasites.

The Fleming Prize Lecture was started by the Microbiology Society in 1976 and named after Alexander Fleming, one of the founders of the society. It is for early career researchers, generally within 12 of being awarded their PhD, who have an outstanding independent research record making a distinct contribution to microbiology. Nominations can be made by any member of the society. Nominees do not have to be members.

Britt Koskella is an associate professor at the University of California, Berkeley, USA. She studies evolutionary biology, specialising in host-pathogen relationships.

Nicole M. Gerardo is an entomologist and Professor of Biology at Emory University in Atlanta, Georgia. In 2021, she became editor of the Annual Review of Entomology.

Catalina Cuellar Gempeler is a Colombian microbial ecologist and marine microbiologist, currently teaching and doing research at Humboldt State University. Her research focuses mainly on understanding microbial meta-community and eco-evolutionary dynamics. The Catalina Cuellar-Gempeler lab is currently focused on studying the interactions between hosts and their microbial communities. The lab's main emphasis is on the microbes used in digestion in the Californian and Eastern, carnivorous pitcher plants. In March 2021, Cuellar-Gempeler was awarded an Early Career grant for $1 million by the National Science Foundation.

References

  1. 1 2 3 "Professor Kayla King". University of Oxford. Retrieved 23 December 2020.
  2. Bragg, Melvyn. "in Our Time: Parasitism". BBC Radio 4. Retrieved 23 December 2020.
  3. Ford, Suzanna A.; King, Kayla C. (2016). "Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control". PLOS Pathogens. 12: e1005465. doi: 10.1371/journal.ppat.1005465 .
  4. Bankers, Laura; Dahan, Dylan; Neiman, Maurine; Adrian-Tucci, Claire; Frost, Crystal; Hurst, Gregory D. D.; King, Kayla C. (2020). "Invasive freshwater snails form novel microbial relationships". Evolutionary Applications. doi: 10.1111/eva.13158 .
  5. Robson, David. "Dangerous liaisons: Fatal animal attractions". New Scientist. New Scientist Ltd. Retrieved 23 December 2020.