![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Key or hash function should avoid clustering , the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to skyrocket, even if the load factor is low and collisions are infrequent. The popular multiplicative hash [1] is claimed to have particularly poor clustering behaviour. [2]
A hash function is any function that can be used to map data of arbitrary size to fixed-size values. The values returned by a hash function are called hash values, hash codes, digests, or simply hashes. The values are usually used to index a fixed-size table called a hash table. Use of a hash function to index a hash table is called hashing or scatter storage addressing.
In computing, a hash table is a data structure that implements an associative array abstract data type, a structure that can map keys to values. A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored.
In cryptography, an HMAC is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key. As with any MAC, it may be used to simultaneously verify both the data integrity and the authenticity of a message.
A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very strong reason to believe that the message was created by a known sender (authentication), and that the message was not altered in transit (integrity).
A cryptographic hash function (CHF) is a mathematical algorithm that maps data of arbitrary size to a bit array of a fixed size. It is a one-way function, that is, a function which is practically infeasible to invert or reverse the computation. Ideally, the only way to find a message that produces a given hash is to attempt a brute-force search of possible inputs to see if they produce a match, or use a rainbow table of matched hashes. Cryptographic hash functions are a basic tool of modern cryptography.
In cryptography, a key derivation function (KDF) is a cryptographic hash function that derives one or more secret keys from a secret value such as a main key, a password, or a passphrase using a pseudorandom function. KDFs can be used to stretch keys into longer keys or to obtain keys of a required format, such as converting a group element that is the result of a Diffie–Hellman key exchange into a symmetric key for use with AES. Keyed cryptographic hash functions are popular examples of pseudorandom functions used for key derivation.
In cryptography, the Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the Digital Signature Algorithm (DSA) which uses elliptic curve cryptography.
In cryptanalysis and computer security, password cracking is the process of recovering passwords from data that has been stored in or transmitted by a computer system in scrambled form. A common approach is to repeatedly try guesses for the password and to check them against an available cryptographic hash of the password.
In cryptography, a message authentication code (MAC), sometimes known as a tag, is a short piece of information used to authenticate a message—in other words, to confirm that the message came from the stated sender and has not been changed. The MAC value protects a message's data integrity, as well as its authenticity, by allowing verifiers to detect any changes to the message content.
File verification is the process of using an algorithm for verifying the integrity of a computer file. This can be done by comparing two files bit-by-bit, but requires two copies of the same file, and may miss systematic corruptions which might occur to both files. A more popular approach is to generate a hash of the copied file and comparing that to the hash of the original file.
Open addressing, or closed hashing, is a method of collision resolution in hash tables. With this method a hash collision is resolved by probing, or searching through alternative locations in the array until either the target record is found, or an unused array slot is found, which indicates that there is no such key in the table. Well-known probe sequences include:
A Cryptographically Generated Address (CGA) is an Internet Protocol Version 6 (IPv6) address that has a host identifier computed from a cryptographic hash function. This procedure is a method for binding a public signature key to an IPv6 address in the Secure Neighbor Discovery Protocol (SEND).
CHAOS is a small Linux distribution designed for creating ad hoc computer clusters. CHAOS is a Live CD which "fits on a single business-card-sized CD-ROM".
In computer science, consistent hashing is a special kind of hashing such that when a hash table is resized, only keys need to be remapped on average where is the number of keys and is the number of slots. In contrast, in most traditional hash tables, a change in the number of array slots causes nearly all keys to be remapped because the mapping between the keys and the slots is defined by a modular operation.
In cryptography and computer science, a hash tree or Merkle tree is a tree in which every leaf node is labelled with the cryptographic hash of a data block, and every non-leaf node is labelled with the cryptographic hash of the labels of its child nodes. Hash trees allow efficient and secure verification of the contents of large data structures. Hash trees are a generalization of hash lists and hash chains.
In cryptography, a Lamport signature or Lamport one-time signature scheme is a method for constructing a digital signature. Lamport signatures can be built from any cryptographically secure one-way function; usually a cryptographic hash function is used.
Cryptographic primitives are well-established, low-level cryptographic algorithms that are frequently used to build cryptographic protocols for computer security systems. These routines include, but are not limited to, one-way hash functions and encryption functions.
In cryptography, a nonce is an arbitrary number that can be used just once in a cryptographic communication. It is often a random or pseudo-random number issued in an authentication protocol to ensure that old communications cannot be reused in replay attacks. They can also be useful as initialization vectors and in cryptographic hash functions.
In the BitTorrent file distribution system, a torrent file or meta-info file is a computer file that contains metadata about files and folders to be distributed, and usually also a list of the network locations of trackers, which are computers that help participants in the system find each other and form efficient distribution groups called swarms. A torrent file does not contain the content to be distributed; it only contains information about those files, such as their names, folder structure, and sizes obtained via cryptographic hash values for verifying file integrity. The term torrent may refer either to the metadata file or to the files downloaded, depending on the context.
In cryptography, a pepper is a secret added to an input such as a password during hashing with a cryptographic hash function. This value differs from a salt in that it is not stored alongside a password hash, but rather the pepper is kept separate in some other medium, such as a Hardware Security Module. Note that NIST never refers to this value as a pepper but rather as a secret salt. A pepper is similar in concept to a salt or an encryption key. It is like a salt in that it is a randomized value that is added to a password hash, and it is similar to an encryption key in that it should be kept secret.