Killough platform

Last updated
Range of movement of the Killough platform (Gray) Killough Platform - Range of Movement.png
Range of movement of the Killough platform (Gray)

A Killough platform is a three-wheel drive system that uses traditional wheels to achieve omni-directional movement without the use of omni-directional wheels (such as omni wheels/Mecanum wheels). Designed by Stephen Killough, after which the platform is named, with help from Francois Pin, wanted to achieve omni-directional movement without using the complicated six motor arrangement required to achieve a controllable three caster wheel system (one motor to control wheel rotation and one motor to control pivoting of the wheel). He first looked into solutions by other inventors that used rollers on the rims larger wheels but considered them flawed in some critical way. This led to the Killough system:

Picture a round platform with three motors underneath, each governing the motion of two wheels that look like miniature balloon tires. The wheels in each pair are mounted in a cage at right angles to each other; the motor can rotate the cage so that one wheel or the other is touching the ground at any one time. By configuring the three pairs of wheels to allow the same type of motion found in three pivoting casters, and by changing the relative speeds of the motors, Killough can make his robotic platform rotate, follow a straight or curved path, and even rotate while moving forward.

"1997 Discover Awards: Automotive & Transportation: Cleaner Than Air", Discover (July 1997)

With Francois Pin, who helped with the computer control and choreography aspects of the design, Killough and Pin readied a public demonstration in 1994. This led to a partnership with Cybertrax Innovative Technologies in 1996, which was developing a motorized wheelchair. [1]

By combining two the motion of two-wheel the vehicle can move in the direction of the perpendicular wheel, or, by rotating all the wheels in the same direction, the vehicle can rotate in place. By using the resultant motion of the vector addition of the wheels a Killough platform is able to achieve omni-directional motion. [2]

Related Research Articles

<span class="mw-page-title-main">Differential (mechanical device)</span> Type of simple planetary gear train

A differential is a gear train with three drive shafts that has the property that the rotational speed of one shaft is the average of the speeds of the others. A common use of differentials is in motor vehicles, to allow the wheels at each end of a drive axle to rotate at different speeds while cornering. Other uses include clocks and analog computers.

<span class="mw-page-title-main">Steering</span> The control of the direction of motion of vehicles and other objects

Steering is the control of the direction of locomotion or the components that enable its control. Steering is achieved through various arrangements, among them ailerons for airplanes, rudders for boats, tilting rotors for helicopters, and many more.

<span class="mw-page-title-main">Parking pawl</span> Transmission-fitted device used to secure a parked vehicle

A parking pawl is a device fitted to a motor vehicle's automatic transmission that locks up the transmission when the transmission shift lever selector is placed in the Park position. "Park" is the first position of the lever in all cars sold in the United States since 1965 through SAE J915, and in most other vehicles worldwide.

<span class="mw-page-title-main">Independent suspension</span> Vehicle suspension in which each wheel is suspended independently

Independent suspension is any automobile suspension system that allows each wheel on the same axle to move vertically independently of the others. This is contrasted with a beam axle or deDion axle system in which the wheels are linked. "Independent" refers to the motion or path of movement of the wheels or suspension. It is common for the left and right sides of the suspension to be connected with anti-roll bars or other such mechanisms. The anti-roll bar ties the left and right suspension spring rates together but does not tie their motion together.

<span class="mw-page-title-main">Caster</span> Undriven wheel that is designed to be attached to the bottom of a larger object

A caster is an undriven wheel that is designed to be attached to the bottom of a larger object to enable that object to be moved.

<span class="mw-page-title-main">Caster angle</span> The angle between the vertical axis and the steering axis of a steered wheel, in side view

The caster angle or castor angle is the angular displacement of the steering axis from the vertical axis of a steered wheel in a car, motorcycle, bicycle, other vehicle or a vessel, as seen from the side of the vehicle. The steering axis in a car with dual ball joint suspension is an imaginary line that runs through the center of the upper ball joint to the center of the lower ball joint, or through the center of the kingpin for vehicles having a kingpin.

A swing axle is a simple type of independent suspension designed and patented by Edmund Rumpler in 1903. This was a revolutionary invention in automotive suspension, allowing driven (powered) wheels to follow uneven road surfaces independently, thus enabling the vehicle's wheels to maintain better road contact and holding; plus each wheel's reduced unsprung weight means their movements have less impact on the vehicle as a whole. The first automotive application was the Rumpler Tropfenwagen, later followed by the Mercedes 130H/150H/170H, the Standard Superior, the Volkswagen Beetle and its derivatives, the Chevrolet Corvair, and the roll-over prone M151 jeep amongst others.

<span class="mw-page-title-main">Tow truck</span> Truck used to move motor vehicles

A tow truck is a truck used to move disabled, improperly parked, impounded, or otherwise indisposed motor vehicles. This may involve recovering a vehicle damaged in an accident, returning one to a drivable surface in a mishap or inclement weather, or towing or transporting one via flatbed to a repair shop or other location.

<span class="mw-page-title-main">Trunnion</span> Protrusion for mount or pivot point

A trunnion is a cylindrical protrusion used as a mounting or pivoting point. First associated with cannons, they are an important military development.

<span class="mw-page-title-main">Tilting three-wheeler</span> Tilting three-wheeled vehicle

A tilting three-wheeler, tilting trike, leaning trike, or even just tilter, is a three-wheeled vehicle and usually a narrow-track vehicle whose body and or wheels tilt in the direction of a turn. Such vehicles can corner without rolling over despite having a narrow axle track because they can balance some or all of the roll moment caused by centripetal acceleration with an opposite roll moment caused by gravity, as bicycles and motorcycles do. This also reduces the lateral acceleration experienced by the rider, which some find more comfortable than the alternative. The narrow profile can result in reduced aerodynamic drag and increased fuel efficiency. These types of vehicles have also been described as "man-wide vehicles" (MWV).

<span class="mw-page-title-main">Pintle</span> Pin or bolt used as part of a pivot or hinge

A pintle is a pin or bolt, usually inserted into a gudgeon, which is used as part of a pivot or hinge. Other applications include pintle and lunette ring for towing, and pintle pins securing casters in furniture.

<span class="mw-page-title-main">Nanocar</span> Chemical compound

The nanocar is a molecule designed in 2005 at Rice University by a group headed by Professor James Tour. Despite the name, the original nanocar does not contain a molecular motor, hence, it is not really a car. Rather, it was designed to answer the question of how fullerenes move about on metal surfaces; specifically, whether they roll or slide.

<span class="mw-page-title-main">Ball joint</span> Spherical bearing most commonly used in automobile steering mechanisms

In an automobile, ball joints are spherical bearings that connect the control arms to the steering knuckles, and are used on virtually every automobile made. They bionically resemble the ball-and-socket joints found in most tetrapod animals.

<span class="mw-page-title-main">Centreless wheel</span>

A centreless wheel is a wheel that lacks a centre or hub, instead being supported and driven at the rim.

<span class="mw-page-title-main">Fifth-wheel coupling</span> Link between a semi-trailer and the towing truck

The fifth-wheel coupling provides the link between a semi-trailer and the towing truck, tractor unit, leading trailer or dolly. The coupling consists of a kingpin, a 2-or-3+12-inch-diameter vertical steel pin protruding from the bottom of the front of the semi-trailer, and a horseshoe-shaped coupling device called a fifth wheel on the rear of the towing vehicle. As the connected truck turns, the downward-facing surface of the semi-trailer rotates against the upward-facing surface of the fixed fifth wheel, which does not rotate. To reduce friction, grease is applied to the surface of the fifth wheel. The configuration is sometimes called a turn-table in Australia and New Zealand, especially if it is a rotating ball-race-bearing type. The advantage of this type of coupling is towing stability.

<span class="mw-page-title-main">Omni wheel</span> Wheel that can move along multiple axes

Omni wheels or poly wheels, similar to Mecanum wheels, are wheels with small discs around the circumference which are perpendicular to the turning direction. The effect is that the wheel can be driven with full force, but will also slide laterally with great ease. These wheels are often employed in holonomic drive systems.

The scrub radius is the distance in front view between the king pin axis and the center of the contact patch of the wheel, where both would theoretically touch the road. It can be positive, negative or zero.

<span class="mw-page-title-main">Škoda 15T</span> Czech tram

Škoda 15T is a 100% low-floor multiple-unit tram developed by VUKV a.s. and built by Škoda Transportation in Pilsen for the Prague tram network. It was a successor to the Škoda 14 T, featuring articulated bogies and more power to correct for problems found during the operation of the 14 T. The 15T has articulated bogies at either end of the train, and Jacobs bogies between the segments. The tram has two double-doors in each segment to allow fast boarding of passengers, and one extra side door leading to the driver's cabin.

<span class="mw-page-title-main">Zero-turn mower</span> Type of lawn mowing equipment

A zero-turn riding lawn mower is a standard riding lawn mower with a turning radius that is effectively zero when the two drive wheels rotate in opposite direction, like a tank turning in place.

<span class="mw-page-title-main">Kiwi drive</span>

A Kiwi drive is a holonomic drive system of three omni-directional wheels, 120 degrees from each other, that enables movement in any direction using only three motors. This is in contrast with non-holonomic systems such as traditionally wheeled or tracked vehicles which cannot move sideways without turning first.

References

  1. "1997 Discover Awards: Automotive & Transportation: Cleaner Than Air". Discover Magazine. 1 July 2018. Retrieved 17 November 2018.
  2. "Going to all places, in all directions: the Killough platform". www.technicbricks.com. 29 August 2008. Retrieved 17 November 2018.