Kinetic smallest enclosing disk

Last updated

A kinetic smallest enclosing disk data structure is a kinetic data structure that maintains the smallest enclosing disk of a set of moving points.

A kinetic data structure is a data structure used to track an attribute of a geometric system that is moving continuously. For example, a kinetic convex hull data structure maintains the convex hull of a group of moving points. The development of kinetic data structures was motivated by computational geometry problems involving physical objects in continuous motion, such as collision or visibility detection in robotics, animation or computer graphics.

Contents

2D

In 2 dimensions, the best known kinetic smallest enclosing disk data structure uses the farthest point delaunay triangulation of the point set to maintain the smallest enclosing disk. [1] The farthest-point Delaunay triangulation is the dual of the farthest-point Voronoi diagram. It is known that if the farthest-point delaunay triangulation of a point set contains an acute triangle, the circumcircle of this triangle is the smallest enclosing disk. Otherwise, the smallest enclosing disk has the diameter of the point set as its diameter. Thus, by maintaining the kinetic diameter of the point set, the farthest-point delaunay triangulation, and whether or not the farthest-point delaunay triangulation has an acute triangle, the smallest enclosing disk can be maintained. This data structure is responsive and compact, but not local or efficient: [1]

Delaunay triangulation

In mathematics and computational geometry, a Delaunay triangulation for a given set P of discrete points in a plane is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is named after Boris Delaunay for his work on this topic from 1934.

In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

A kinetic diameter data structure is a kinetic data structure which maintains the diameter of a set of moving points. The diameter of a set of moving points is the maximum distance between any pair of points in the set. In the two dimensional case, the kinetic data structure for kinetic convex hull can be used to construct a kinetic data structure for the diameter of a moving point set that is responsive, compact and efficient.

The existence of kinetic data structure that has events is an open problem. [1]

Approximate 2D

The smallest enclosing disk of a set of n moving points can be ε-approximated by a kinetic data structure that processes events and requires time total. [2]

Higher dimensions

In dimensions higher than 2, efficiently maintaining the smallest enclosing sphere of a set of moving points is an open problem. [1]

Related Research Articles

Voronoi diagram Type of plane partition

In mathematics, a Voronoi diagram is a partitioning of a plane into regions based on distance to points in a specific subset of the plane. That set of points is specified beforehand, and for each seed there is a corresponding region consisting of all points closer to that seed than to any other. These regions are called Voronoi cells. The Voronoi diagram of a set of points is dual to its Delaunay triangulation.

In computational geometry, polygon triangulation is the decomposition of a polygonal area P into a set of triangles, i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P.

Bounding sphere

In mathematics, given a non-empty set of objects of finite extension in -dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is an -dimensional solid sphere containing all of these objects.

Euclidean minimum spanning tree the shortest network collecting a given set of points in the plane

The Euclidean minimum spanning tree or EMST is a minimum spanning tree of a set of n points in the plane, where the weight of the edge between each pair of points is the Euclidean distance between those two points. In simpler terms, an EMST connects a set of dots using lines such that the total length of all the lines is minimized and any dot can be reached from any other by following the lines.

Point set triangulation

A triangulation of a set of points in the Euclidean space is a simplicial complex that covers the convex hull of , and whose vertices belong to . In the plane, triangulations are made up of triangles, together with their edges and vertices. Some authors require that all the points of are vertices of its triangulations. In this case, a triangulation of a set of points in the plane can alternatively be defined as a maximal set of non-crossing edges between points of . In the plane, triangulations are special cases of planar straight-line graphs.

Pitteway triangulation

In computational geometry, a Pitteway triangulation is a point set triangulation in which the nearest neighbor of any point p within the triangulation is one of the vertices of the triangle containing p. Alternatively, it is a Delaunay triangulation in which each internal edge crosses its dual Voronoi diagram edge. Pitteway triangulations are named after Michael Pitteway, who studied them in 1973. Not every point set supports a Pitteway triangulation. When such a triangulation exists it is a special case of the Delaunay triangulation, and consists of the union of the Gabriel graph and convex hull.

In computational geometry, the Bowyer–Watson algorithm is a method for computing the Delaunay triangulation of a finite set of points in any number of dimensions. The algorithm can be also used to obtain a Voronoi diagram of the points, which is the dual graph of the Delaunay triangulation.

In computational geometry and computer science, the minimum-weight triangulation problem is the problem of finding a triangulation of minimal total edge length. That is, an input polygon or the convex hull of an input point set must be subdivided into triangles that meet edge-to-edge and vertex-to-vertex, in such a way as to minimize the sum of the perimeters of the triangles. The problem is NP-hard for point set inputs, but may be approximated to any desired degree of accuracy. For polygon inputs, it may be solved exactly in polynomial time. The minimum weight triangulation has also sometimes been called the optimal triangulation.

Kinetic heap data structure

A Kinetic Heap is a kinetic data structure, obtained by the kinetization of a heap. It is designed to store elements where the priority is changing as a continuous function of time. As a type of kinetic priority queue, it maintains the maximum priority element stored in it. The kinetic heap data structure works by storing the elements as a tree that satisfies the following heap property - if B is a child node of A, then the priority of the element in A must be higher than the priority of the element in B. This heap property is enforced using certificates along every edge so, like other kinetic data structures, a kinetic heap also contains a priority queue to maintain certificate failure times.

A kinetic convex hull data structure is a kinetic data structure that maintains the convex hull of a set of continuously moving points.

A kinetic closest pair data structure is a kinetic data structure that maintains the closest pair of points, given a set P of n points that are moving continuously with time in a metric space. While many efficient algorithms were known in the static case, they proved hard to kinetize, so new static algorithms were developed to solve this problem.

A kinetic sorted list is a kinetic data structure for maintaining a list of points under motion in sorted order. It is used as a kinetic predecessor data structure, and as a component in more complex kinetic data structures such as kinetic closest pair.

A Kinetic Triangulation data structure is a kinetic data structure that maintains a triangulation of a set of moving points. Maintaining a kinetic triangulation is important for applications that involve motion planning, such as video games, virtual reality, dynamic simulations and robotics.

A kinetic width data structure is a kinetic data structure which maintains the width of a set of moving points. In 2D, the width of a point set is the minimum distance between two parallel lines that contain the point set in the strip between them. For the two dimensional case, the kinetic data structure for kinetic convex hull can be used to construct a kinetic data structure for the width of a point set that is responsive, compact and efficient.

Kinetic minimum box is a kinetic data structure to maintain the minimum bounding box of a set of points whose positions change continuously with time. For points moving in a plane, the kinetic convex hull data structure can be used as a basis for a responsive, compact and efficient kinetic minimum box data structure.

A kinetic Euclidean minimum spanning tree is a kinetic data structure that maintains the Euclidean minimum spanning tree (EMST) of a set P of n points that are moving continuously.

The k-semi-Yao graph (k-SYG) of a set of n objects P is a geometric proximity graph, which was first described to present a kinetic data structure for maintenance of all the nearest neighbors on moving objects. It is named for its relation to the Yao graph, which is named after Andrew Yao.

References

  1. 1 2 3 4 Erik D. Demaine, Sarah Eisenstat, Leonidas J. Guibas, André Schulz, Kinetic Minimum Spanning Circle, 2010.
  2. Pankaj K. Agarwal and Sariel Hal-Peled. Maintaining approximate extent measures of moving points. In SODA '01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 148–157, Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics.