Knowledge level modeling

Last updated

Knowledge level modeling is the process of theorizing over observations about a world and, to some extent, explaining the behavior of an agent as it interacts with its environment.

Crucial to the understanding of knowledge level modeling are Allen Newell's notions of the knowledge level, operators, and an agent's goal state.

Essentially, knowledge level modeling involves evaluating an agent's knowledge of the world and all possible states and with that information constructing a model that depicts the interrelations and pathways between the various states. With this model, various problem solving methods (i.e. prediction, classification, explanation, tutoring, qualitative reasoning, planning, etc.) can be viewed in a uniform fashion. This modeling aspect is crucial in cognitive architectures for intelligent agents. [1]

In "Applications of Abduction: Knowledge-Level Modeling", [2] Menzies proposes a new knowledge level modeling approach, called KLB, which specifies that "a knowledge base should be divided into domain-specific facts and domain-independent abstract problem solving inference procedures." In his method, abductive reasoning is used to find assumptions which, when combined with theories, achieve the desired goals of the system.

For a good example of abductive reasoning, look at logical reasoning.

See also

Related Research Articles

Logic programming is a programming, database and knowledge-representation and reasoning paradigm which is based on formal logic. A program, database or knowledge base in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

<span class="mw-page-title-main">Case-based reasoning</span> Process of solving new problems based on the solutions of similar past problems

In artificial intelligence and philosophy, case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems.

<span class="mw-page-title-main">Symbolic artificial intelligence</span> Methods in artificial intelligence research

In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.

A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure Programing language.

Soar is a cognitive architecture, originally created by John Laird, Allen Newell, and Paul Rosenbloom at Carnegie Mellon University. It is now maintained and developed by John Laird's research group at the University of Michigan.

A cognitive tutor is a particular kind of intelligent tutoring system that utilizes a cognitive model to provide feedback to students as they are working through problems. This feedback will immediately inform students of the correctness, or incorrectness, of their actions in the tutor interface; however, cognitive tutors also have the ability to provide context-sensitive hints and instruction to guide students towards reasonable next steps.

A blackboard system is an artificial intelligence approach based on the blackboard architectural model, where a common knowledge base, the "blackboard", is iteratively updated by a diverse group of specialist knowledge sources, starting with a problem specification and ending with a solution. Each knowledge source updates the blackboard with a partial solution when its internal constraints match the blackboard state. In this way, the specialists work together to solve the problem. The blackboard model was originally designed as a way to handle complex, ill-defined problems, where the solution is the sum of its parts.

<span class="mw-page-title-main">Problem solving</span> Approaches to problem solving

Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue, whereas the latter is complex problem solving (CPS) with multiple interrelated obstacles. Another classification of problem-solving tasks is into well-defined problems with specific obstacles and goals, and ill-defined problems in which the current situation is troublesome but it is not clear what kind of resolution to aim for. Similarly, one may distinguish formal or fact-based problems requiring psychometric intelligence, versus socio-emotional problems which depend on the changeable emotions of individuals or groups, such as tactful behavior, fashion, or gift choices.

Troubleshooting is a form of problem solving, often applied to repair failed products or processes on a machine or a system. It is a logical, systematic search for the source of a problem in order to solve it, and make the product or process operational again. Troubleshooting is needed to identify the symptoms. Determining the most likely cause is a process of elimination—eliminating potential causes of a problem. Finally, troubleshooting requires confirmation that the solution restores the product or process to its working state.

<span class="mw-page-title-main">Intelligent agent</span> Software agent which acts autonomously

In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.

Ecological interface design (EID) is an approach to interface design that was introduced specifically for complex sociotechnical, real-time, and dynamic systems. It has been applied in a variety of domains including process control, aviation, and medicine.

An intelligent tutoring system (ITS) is a computer system that aims to provide immediate and customized instruction or feedback to learners, usually without requiring intervention from a human teacher. ITSs have the common goal of enabling learning in a meaningful and effective manner by using a variety of computing technologies. There are many examples of ITSs being used in both formal education and professional settings in which they have demonstrated their capabilities and limitations. There is a close relationship between intelligent tutoring, cognitive learning theories and design; and there is ongoing research to improve the effectiveness of ITS. An ITS typically aims to replicate the demonstrated benefits of one-to-one, personalized tutoring, in contexts where students would otherwise have access to one-to-many instruction from a single teacher, or no teacher at all. ITSs are often designed with the goal of providing access to high quality education to each and every student.

Means–ends analysis (MEA) is a problem solving technique used commonly in artificial intelligence (AI) for limiting search in AI programs.

<span class="mw-page-title-main">Outline of thought</span> Overview of and topical guide to thought

The following outline is provided as an overview of and topical guide to thought (thinking):

Abductive logic programming (ALP) is a high-level knowledge-representation framework that can be used to solve problems declaratively, based on abductive reasoning. It extends normal logic programming by allowing some predicates to be incompletely defined, declared as abducible predicates. Problem solving is effected by deriving hypotheses on these abducible predicates as solutions of problems to be solved. These problems can be either observations that need to be explained or goals to be achieved. It can be used to solve problems in diagnosis, planning, natural language and machine learning. It has also been used to interpret negation as failure as a form of abductive reasoning.

<span class="mw-page-title-main">CLARION (cognitive architecture)</span>

Connectionist Learning with Adaptive Rule Induction On-line (CLARION) is a computational cognitive architecture that has been used to simulate many domains and tasks in cognitive psychology and social psychology, as well as implementing intelligent systems in artificial intelligence applications. An important feature of CLARION is the distinction between implicit and explicit processes and focusing on capturing the interaction between these two types of processes. The system was created by the research group led by Ron Sun.

Neo-Piagetian theories of cognitive development criticize and build upon Jean Piaget's theory of cognitive development.

In information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems.

<span class="mw-page-title-main">Action model learning</span>

Action model learning is an area of machine learning concerned with creation and modification of software agent's knowledge about effects and preconditions of the actions that can be executed within its environment. This knowledge is usually represented in logic-based action description language and used as the input for automated planners.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

References

  1. Lieto, A.; Lebiere, C.; Oltramari, A. (2018). "The knowledge level in cognitive architectures: Current limitations and possible developments". Cognitive Systems Research. 48: 39–55. doi:10.1016/j.cogsys.2017.05.001. hdl: 2318/1665207 . S2CID   206868967.
  2. T. Menzies. Applications of Abduction: Knowledge-Level Modeling. November 1996