This article needs additional citations for verification .(May 2020) |
The Korea Carbon Capture & Sequestration R&D Center (KCRC) is an institution in Daejeon, South Korea, specialized in Carbon Capture & Sequestration (CCS) R&D. [1] The Korean government has selected CCS technology as part of core technologies for green growth, and has established the National Comprehensive Plan for CCS to commercialize and ensure the international competitiveness of CCS technology by 2020. As part of the plan, the Ministry of Science, ICT and future Planning (MSIP) has developed the ‘Korea CCS 2020 Project' to secure the best original technology of CCS and established KCRC on December 22, 2011.
The vision of KCRC is to build a research basis and develop innovative original CCS technology by integrating Korea's CCS research capabilities.
Carbon Capture and Sequestration (CCS) is a technology to capture the large quantities of carbon dioxide (CO2) normally released into the atmosphere from the use of fossil fuel in power generation and other industries, transport the captured/compressed CO2 to a location for permanent storage site, and inject it into deep underground geologic formations to securely store it or convert it into useful materials.
Goal
Overview
Implement Korea CCS 2020 Project
Build CCS Infrastructure
FutureGen was a project to demonstrate capture and sequestration of waste carbon dioxide from a coal-fired electrical generating station. The project (renamed FutureGen 2.0) was retrofitting a shuttered coal-fired power plant in Meredosia, Illinois, with oxy-combustion generators. The waste CO2 would be piped approximately 30 miles (48 km) to be sequestered in underground saline formations. FutureGen was a partnership between the United States government and an alliance of primarily coal-related corporations. Costs were estimated at US$1.65 billion, with $1.0 billion provided by the Federal Government.
The National Energy Technology Laboratory (NETL) is a U.S national laboratory under the Department of Energy Office of Fossil Energy. NETL focuses on applied research for the clean production and use of domestic energy resources. NETL performs research and development on the supply, efficiency, and environmental constraints of producing and using fossil energy resources, while maintaining their affordability.
Coal pollution mitigation, sometimes called clean coal, is a series of systems and technologies that seek to mitigate the health and environmental impact of coal; in particular air pollution from coal-fired power stations, and from coal burnt by heavy industry.
Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the carbon dioxide stream that is to be captured can result from burning fossil fuels or biomass. Usually the CO2 is captured from large point sources, such as a chemical plant or biomass plant, and then stored in an underground geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change.
Enhanced oil recovery, also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted otherwise. EOR can extract 30% to 60% or more of a reservoir's oil, compared to 20% to 40% using primary and secondary recovery. According to the US Department of Energy, carbon dioxide and water are injected along with one of three EOR techniques: thermal injection, gas injection, and chemical injection. More advanced, speculative EOR techniques are sometimes called quaternary recovery.
Carbon sequestration is the process of storing carbon in a carbon pool. Carbon sequestration is a naturally occurring process but it can also be enhanced or achieved with technology, for example within carbon capture and storage projects. There are two main types of carbon sequestration: geologic and biologic.
An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the electricity generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency, compared to conventional pulverized coal combustion.
Oxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures are possible. Historically, the primary use of oxy-fuel combustion has been in welding and cutting of metals, especially steel, since oxy-fuel allows for higher flame temperatures than can be achieved with an air-fuel flame. It has also received a lot of attention in recent decades as a potential carbon capture and storage technology.
A low-carbon economy (LCE) or decarbonised economy is an economy based on energy sources that produce low levels of greenhouse gas (GHG) emissions. GHG emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. Continued emission of greenhouse gases will cause long-lasting changes around the world, increasing the likelihood of severe, pervasive, and irreversible effects for people and ecosystems. Shifting to a low-carbon economy on a global scale could bring substantial benefits both for developed and developing countries. Many countries around the world are designing and implementing low-emission development strategies (LEDS). These strategies seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas emissions and increasing resilience to the effects of climate change.
Carbon capture and storage (CCS) is a technology that can capture carbon dioxide CO2 emissions produced from fossil fuels in electricity, industrial processes which prevents CO2 from entering the atmosphere. Carbon capture and storage is also used to sequester CO2 filtered out of natural gas from certain natural gas fields. While typically the CO2 has no value after being stored, Enhanced Oil Recovery uses CO2 to increase yield from declining oil fields.
The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed.
Carbon dioxide removal (CDR), also known as greenhouse gas removal (GGR) or negative CO2 emissions, is a process in which carbon dioxide gas is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. CDR methods are also known as negative emissions technologies. In the context of net zero greenhouse gas emissions targets, CDR is increasingly integrated into climate policy, as a new element of climate change mitigation strategies. Use of CDR can be less expensive than reducing some sources of emissions.
Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. BECCS can be a "negative emissions technology" (NET). The carbon in the biomass comes from the greenhouse gas carbon dioxide (CO2) which is extracted from the atmosphere by the biomass when it grows. Energy ("bioenergy") is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods.
The Kędzierzyn Zero-Emission Power and Chemical Complex was a proposed facility in Kędzierzyn-Koźle, Poland. It was planned to combine the functions of power and heat generation with chemical production and carbon capture and storage. The project was proposed by a consortium of chemicals producers, including Zakłady Azotowe Kędzierzyn and the electricity company Południowy Koncern Energetyczny. The facility would have produced synthesis gas by gasification of hard coal. Gas produced by the plant would have been used for power and heat generation, or for the production of other chemicals. The carbon dioxide (CO2) produced by this plant would have been stored in natural geological reservoirs, or used as a raw material for the production of synthesis fuels, fertilizers or plastics.
The Quest Carbon Capture and Storage Project captures and stores underground one million tonnes of CO2 emissions per year. The capture unit is located at the Scotford Upgrader in Alberta, Canada, where hydrogen is produced to upgrade bitumen from oil sands into synthetic crude oil.
The White Rose Carbon Capture and Storage project was a proposed oxy-fuel coal-fired power plant near the Drax power station in North Yorkshire, United Kingdom. It was proposed in 2012 by Capture Power Limited (in partnership with National Grid). This project would have been the first coal-fired power plant to demonstrate the use of oxy-fuel technology for low-carbon electricity at a competitive cost. The proposed 426 MW plant was expected to send 2 Mt CO2/year to an offshore saline aquifer, achieving 90% capture. The Development Consent Order application submitted to the Department of Energy and Climate Change, now Department for Business, Energy and Industrial Strategy, was rejected in April 2016. The rejection was on the basis that the project had no route to funding, following the UK government cancelling a CCS Competition in November 2015.
Mexico highly depends on the burning of its fossil fuels, and for the same reason, it is in its interest to look into mitigation solutions for its corresponding emissions. In the General Law on Climate Change on 2012, Mexico promised to reduce 20% of its greenhouse gas (GHG) emissions by 2020 and 50% by 2050, as well as in the Paris Agreement. 19% of this new mitigation plan will be dedicated to carbon capture and storage and specifically 10% to the energy industry.
Carbon capture and utilization (CCU) is the process of capturing carbon dioxide (CO2) to be recycled for further usage. Carbon capture and utilization may offer a response to the global challenge of significantly reducing greenhouse gas emissions from major stationary (industrial) emitters. CCU differs from carbon capture and storage (CCS) in that CCU does not aim nor result in permanent geological storage of carbon dioxide. Instead, CCU aims to convert the captured carbon dioxide into more valuable substances or products; such as plastics, concrete or biofuel; while retaining the carbon neutrality of the production processes.
Direct air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted CO2 is then sequestered in safe long-term storage (called direct air carbon capture and sequestration (DACCS)), the overall process will achieve carbon dioxide removal and be a "negative emissions technology" (NET). As of 2022, DAC has yet to become profitable because the cost of using DAC to sequester carbon dioxide is several times the carbon price.