In game theory, Kuhn's theorem relates perfect recall, mixed and unmixed strategies and their expected payoffs. It is named after Harold W. Kuhn.
Game theory is the study of mathematical models of strategic interaction between rational decision-makers. It has applications in all fields of social science, as well as in logic and computer science. Originally, it addressed zero-sum games, in which each participant's gains or losses are exactly balanced by those of the other participants. Today, game theory applies to a wide range of behavioral relations, and is now an umbrella term for the science of logical decision making in humans, animals, and computers.
Harold William Kuhn was an American mathematician who studied game theory. He won the 1980 John von Neumann Theory Prize along with David Gale and Albert W. Tucker. A former Professor Emeritus of Mathematics at Princeton University, he is known for the Karush–Kuhn–Tucker conditions, for Kuhn's theorem, for developing Kuhn poker as well as the description of the Hungarian method for the assignment problem. Recently, though, a paper by Carl Gustav Jacobi, published posthumously in 1890 in Latin, has been discovered that anticipates by many decades the Hungarian algorithm.
The theorem states that in a game where players may remember all of their previous moves/states of the game available to them, for every mixed strategy there is a behavioral strategy that has an equivalent payoff (i.e. the strategies are equivalent). The theorem does not specify what this strategy is, only that it exists. It is valid both for finite games, as well as infinite games (i.e. games with continuous choices, or iterated infinitely). [1]
Minimax is a decision rule used in artificial intelligence, decision theory, game theory, statistics and philosophy for minimizing the possible loss for a worst case scenario. When dealing with gains, it is referred to as "maximin"—to maximize the minimum gain. Originally formulated for two-player zero-sum game theory, covering both the cases where players take alternate moves and those where they make simultaneous moves, it has also been extended to more complex games and to general decision-making in the presence of uncertainty.
In game theory and economic theory, a zero-sum game is a mathematical representation of a situation in which each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where taking a larger piece reduces the amount of cake available for others, is a zero-sum game if all participants value each unit of cake equally.
In game theory, the Nash equilibrium, named after the mathematician John Forbes Nash Jr., is a proposed solution of a non-cooperative game involving two or more players in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy.
In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.
Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.
Matching pennies is the name for a simple game used in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even keeps both pennies, so wins one from Odd. If the pennies do not match Odd keeps both pennies, so receives one from Even.
In game theory, a player's strategy is any of the options which he or she chooses in a setting where the outcome depends not only on their own actions but on the actions of others. A player's strategy will determine the action which the player will take at any stage of the game.
An extensive-form game is a specification of a game in game theory, allowing for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature".
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists.
In game theory, folk theorems are a class of theorems about possible Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept subgame-perfect Nash equilibria rather than Nash equilibrium.
In game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game. The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of his or her current action on the future actions of other players; this impact is sometimes called his or her reputation. Single stage game or single shot game are names for non-repeated games.
The Bishop–Cannings theorem is a theorem in evolutionary game theory. It states that (i) all members of a mixed evolutionarily stable strategy (ESS) have the same payoff, and (ii) that none of these can also be a pure ESS. The usefulness of the results comes from the fact that they can be used to directly find ESSes algebraically, rather than simulating the game and solving it by iteration.
In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. The theorem aims to justify a puzzling aspect of mixed strategy Nash equilibria: that each player is wholly indifferent amongst each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.
In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.
In descriptive set theory, the Borel determinacy theorem states that any Gale–Stewart game whose payoff set is a Borel set is determined, meaning that one of the two players will have a winning strategy for the game.
A continuous game is a mathematical concept, used in game theory, that generalizes the idea of an ordinary game like tic-tac-toe or checkers (draughts). In other words, it extends the notion of a discrete game, where the players choose from a finite set of pure strategies. The continuous game concepts allows games to include more general sets of pure strategies, which may be uncountably infinite.
In the mathematical theory of games, in particular the study of zero-sum continuous games, not every game has a minimax value. This is the expected value to one of the players when both play a perfect strategy.
In game theory, Zermelo’s theorem, named after Ernst Zermelo, says that in any finite two-person game of perfect information in which the players move alternately and in which chance does not affect the decision making process, if the game cannot end in a draw, then one of the two players must have a winning strategy. An alternate statement is that for a game meeting all of these conditions except the condition that a draw is not possible, then either the first-player can force a win, or the second-player can force a win, or both players can force a draw.
This game theory article is a stub. You can help Wikipedia by expanding it. |