L/poly

Last updated

In computational complexity theory, L/poly is the complexity class of logarithmic space machines with a polynomial amount of advice. L/poly is a non-uniform logarithmic space class, analogous to the non-uniform polynomial time class P/poly. [1]

Formally, for a formal language L to belong to L/poly, there must exist an advice function f that maps an integer n to a string of length polynomial in n, and a Turing machine M with two read-only input tapes and one read-write tape of size logarithmic in the input size, such that an input x of length n belongs to L if and only if machine M accepts the input x, f(n). [2] Alternatively and more simply, L is in L/poly if and only if it can be recognized by branching programs of polynomial size. [3] One direction of the proof that these two models of computation are equivalent in power is the observation that, if a branching program of polynomial size exists, it can be specified by the advice function and simulated by the Turing machine. In the other direction, a Turing machine with logarithmic writable space and a polynomial advice tape may be simulated by a branching program the states of which represent the combination of the configuration of the writable tape and the position of the Turing machine heads on the other two tapes.

In 1979, Aleliunas et al. showed that symmetric logspace is contained in L/poly. [4] However, this result was superseded by Omer Reingold's result that SL collapses to uniform logspace. [5]

BPL is contained in L/poly, which is a variant of Adleman's theorem. [6]

Related Research Articles

Computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can—unlike a deterministic Turing Machine—have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution.

The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely.

Time complexity Estimate of time taken for running an algorithm

In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to differ by at most a constant factor.

Complexity class Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.

In computational complexity theory, a probabilistically checkable proof (PCP) is a type of proof that can be checked by a randomized algorithm using a bounded amount of randomness and reading a bounded number of bits of the proof. The algorithm is then required to accept correct proofs and reject incorrect proofs with very high probability. A standard proof, as used in the verifier-based definition of the complexity class NP, also satisfies these requirements, since the checking procedure deterministically reads the whole proof, always accepts correct proofs and rejects incorrect proofs. However, what makes them interesting is the existence of probabilistically checkable proofs that can be checked by reading only a few bits of the proof using randomness in an essential way.

In computational complexity theory, P, also known as PTIME or DTIME(nO ), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

In computational complexity theory, an advice string is an extra input to a Turing machine that is allowed to depend on the length n of the input, but not on the input itself. A decision problem is in the complexity class P/f(n) if there is a polynomial time Turing machine M with the following property: for any n, there is an advice string A of length f(n) such that, for any input x of length n, the machine M correctly decides the problem on the input x, given x and A.

In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981.

In computational complexity theory, NL is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space.

In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computational complexity theory, the complexity class FL is the set of function problems which can be solved by a deterministic Turing machine in a logarithmic amount of memory space. As in the definition of L, the machine reads its input from a read-only tape and writes its output to a write-only tape; the logarithmic space restriction applies only to the read/write working tape.

In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.

Randomized Logarithmic-space (RL), sometimes called RLP, is the complexity class of computational complexity theory problems solvable in logarithmic space and polynomial time with probabilistic Turing machines with one-sided error. It is named in analogy with RP, which is similar but has no logarithmic space restriction.

In computational complexity theory, P/poly is the complexity class of languages recognized by a polynomial-time Turing machine with a polynomial-bounded advice function. It is also equivalently defined as the class PSIZE of languages that have polynomial-size circuit families. This means that the machine that recognizes a language may use a different advice function or use a different circuit depending on the length of the input, and that the advice function or circuit will vary only on the size of the input.

In computational complexity theory, the Immerman–Szelepcsényi theorem states that nondeterministic space complexity classes are closed under complementation. It was proven independently by Neil Immerman and Róbert Szelepcsényi in 1987, for which they shared the 1995 Gödel Prize. In its general form the theorem states that NSPACE(s ) = co-NSPACE(s ) for any function s(n) ≥ log n. The result is equivalently stated as NL = co-NL; although this is the special case when s(n) = log n, it implies the general theorem by a standard padding argument. The result solved the second LBA problem.

In computer science, st-connectivity or STCON is a decision problem asking, for vertices s and t in a directed graph, if t is reachable from s.

In computational complexity theory, NL-complete is a complexity class containing the languages that are complete for NL, the class of decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. The NL-complete languages are the most "difficult" or "expressive" problems in NL. If a method exists for solving any one of the NL-complete problems in logarithmic memory space, then NL = L.

Circuit complexity model of computational complexity

In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits .

In computational complexity theory, NP/poly is a complexity class, a non-uniform analogue of the class NP of problems solvable in polynomial time by a non-deterministic Turing machine. It is the non-deterministic complexity class corresponding to the deterministic class P/poly.

References

  1. Complexity Zoo : L/poly.
  2. Thierauf, Thomas (2000), The Computational Complexity of Equivalence and Isomorphism Problems, Lecture Notes in Computer Science, 1852, Springer-Verlag, p. 66, ISBN   978-3-540-41032-4 .
  3. Cobham, Alan (1966), "The recognition problem for the set of perfect squares", Proceedings of the 7th Annual IEEE Symposium on Switching and Automata Theory (SWAT 1966) , pp. 78–87, doi:10.1109/SWAT.1966.30 .
  4. Aleliunas, Romas; Karp, Richard M.; Lipton, Richard J.; Lovász, László; Rackoff, Charles (1979), "Random walks, universal traversal sequences, and the complexity of maze problems", Proceedings of 20th Annual Symposium on Foundations of Computer Science , New York: IEEE, pp. 218–223, doi:10.1109/SFCS.1979.34, MR   0598110 .
  5. Reingold, Omer (2008), "Undirected connectivity in log-space", Journal of the ACM , 55 (4): 1–24, doi:10.1145/1391289.1391291, MR   2445014 .
  6. Nisan, Noam (1993), "On read-once vs. multiple access to randomness in logspace", Theoretical Computer Science, 107 (1): 135–144, doi: 10.1016/0304-3975(93)90258-U , MR   1201169 .