Advice (complexity)

Last updated

In computational complexity theory, an advice string is an extra input to a Turing machine that is allowed to depend on the length n of the input, but not on the input itself. A decision problem is in the complexity class P/f(n) if there is a polynomial time Turing machine M with the following property: for any n, there is an advice string A of length f(n) such that, for any input x of length n, the machine M correctly decides the problem on the input x, given x and A.

The most common complexity class involving advice is P/poly where advice length f(n) can be any polynomial in n. P/poly is equal to the class of decision problems such that, for every n, there exists a polynomial size Boolean circuit correctly deciding the problem on all inputs of length n. One direction of the equivalence is easy to see. If, for every n, there is a polynomial size Boolean circuit A(n) deciding the problem, we can use a Turing machine that interprets the advice string as a description of the circuit. Then, given the description of A(n) as the advice, the machine will correctly decide the problem on all inputs of length n. The other direction uses a simulation of a polynomial-time Turing machine by a polynomial-size circuit as in one proof of Cook's theorem. Simulating a Turing machine with advice is no more complicated than simulating an ordinary machine, since the advice string can be incorporated into the circuit. [1]

Because of this equivalence, P/poly is sometimes defined as the class of decision problems solvable by polynomial size Boolean circuits, or by polynomial-size non-uniform Boolean circuits.

P/poly contains both P and BPP (Adleman's theorem). It also contains some undecidable problems, such as the unary version of every undecidable problem, including the halting problem. Because of that, it is not contained in DTIME (f(n)) or NTIME (f(n)) for any f.

Advice classes can be defined for other resource bounds instead of P. For example, taking a non-deterministic polynomial time Turing machine with an advice of length f(n) gives the complexity class NP/f(n). If we are allowed an advice of length 2n, we can use it to encode whether each input of length n is contained in the language. Therefore, any boolean function is computable with an advice of length 2n and advice of more than exponential length is not meaningful.

Similarly, the class L/poly can be defined as deterministic logspace with a polynomial amount of advice.

Known results include:

Related Research Articles

In computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.

In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

<span class="mw-page-title-main">NP (complexity)</span> Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In computational complexity theory, the class NC is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem is in NC if there exist constants c and k such that it can be solved in time O(logc n) using O(nk) parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.

In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.

In computational complexity theory, the complexity class EXPTIME is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2p) time, where p(n) is a polynomial function of n.

<span class="mw-page-title-main">Complexity class</span> Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.

In computational complexity theory, a probabilistically checkable proof (PCP) is a type of proof that can be checked by a randomized algorithm using a bounded amount of randomness and reading a bounded number of bits of the proof. The algorithm is then required to accept correct proofs and reject incorrect proofs with very high probability. A standard proof, as used in the verifier-based definition of the complexity class NP, also satisfies these requirements, since the checking procedure deterministically reads the whole proof, always accepts correct proofs and rejects incorrect proofs. However, what makes them interesting is the existence of probabilistically checkable proofs that can be checked by reading only a few bits of the proof using randomness in an essential way.

In computational complexity theory, P, also known as PTIME or DTIME(nO ), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.

In computational complexity theory, the complexity class NEXPTIME is the set of decision problems that can be solved by a non-deterministic Turing machine using time .

In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981.

In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computational complexity theory, P/poly is a complexity class representing problems that can be solved by small circuits. More precisely, it is the set of formal languages that have polynomial-size circuit families. It can also be defined equivalently in terms of Turing machines with advice, extra information supplied to the Turing machine along with its input, that may depend on the input length but not on the input itself. In this formulation, P/poly is the class of decision problems that can be solved by a polynomial-time Turing machine with advice strings of length polynomial in the input size. These two different definitions make P/poly central to circuit complexity and non-uniform complexity.

<span class="mw-page-title-main">Boolean circuit</span> Model of computation

In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length.

In computational complexity theory, L/poly is the complexity class of logarithmic space machines with a polynomial amount of advice. L/poly is a non-uniform logarithmic space class, analogous to the non-uniform polynomial time class P/poly.

<span class="mw-page-title-main">Circuit complexity</span> Model of computational complexity

In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits .

In computational complexity theory, a unary language or tally language is a formal language where all strings have the form 1k, where "1" can be any fixed symbol. For example, the language {1, 111, 1111} is unary, as is the language {1k | k is prime}. The complexity class of all such languages is sometimes called TALLY.

In computational complexity theory, a certificate is a string that certifies the answer to a computation, or certifies the membership of some string in a language. A certificate is often thought of as a solution path within a verification process, which is used to check whether a problem gives the answer "Yes" or "No".

In computational complexity theory, NP/poly is a complexity class, a non-uniform analogue of the class NP of problems solvable in polynomial time by a non-deterministic Turing machine. It is the non-deterministic complexity class corresponding to the deterministic class P/poly.

References

  1. Arora, Sanjeev; Barak, Boaz (2009), Computational Complexity: A Modern Approach, Cambridge University Press, p. 113, ISBN   9780521424264, Zbl   1193.68112 .
  2. Reinhardt, Klaus; Allender, Eric (2000). "Making nondeterminism unambiguous". SIAM J. Comput. 29 (4): 1118–1131. CiteSeerX   10.1.1.55.3203 . doi:10.1137/S0097539798339041. Zbl   0947.68063.
  3. Hemaspaandra, Lane A.; Ogihara, Mitsunori (2002). The complexity theory companion . Texts in Theoretical Computer Science. An EATCS Series. Berlin: Springer-Verlag. ISBN   3-540-67419-5. Zbl   0993.68042.
  4. Lance Fortnow, A Little Theorem