In theoretical computer science, the term isolation lemma (or isolating lemma) refers to randomized algorithms that reduce the number of solutions to a problem to one, should a solution exist. This is achieved by constructing random constraints such that, with non-negligible probability, exactly one solution satisfies these additional constraints if the solution space is not empty. Isolation lemmas have important applications in computer science, such as the Valiant–Vazirani theorem and Toda's theorem in computational complexity theory.
The first isolation lemma was introduced by Valiant & Vazirani (1986), albeit not under that name. Their isolation lemma chooses a random number of random hyperplanes, and has the property that, with non-negligible probability, the intersection of any fixed non-empty solution space with the chosen hyperplanes contains exactly one element. This suffices to show the Valiant–Vazirani theorem: there exists a randomized polynomial-time reduction from the satisfiability problem for Boolean formulas to the problem of detecting whether a Boolean formula has a unique solution. Mulmuley, Vazirani & Vazirani (1987) introduced an isolation lemma of a slightly different kind: Here every coordinate of the solution space gets assigned a random weight in a certain range of integers, and the property is that, with non-negligible probability, there is exactly one element in the solution space that has minimum weight. This can be used to obtain a randomized parallel algorithm for the maximum matching problem.
Stronger isolation lemmas have been introduced in the literature to fit different needs in various settings. For example, the isolation lemma of Chari, Rohatgi & Srinivasan (1993) has similar guarantees as that of Mulmuley et al., but it uses fewer random bits. In the context of the exponential time hypothesis, Calabro et al. (2008) prove an isolation lemma for k-CNF formulas. Noam Ta-Shma [1] gives an isolation lemma with slightly stronger parameters, and gives non-trivial results even when the size of the weight domain is smaller than the number of variables.
It is remarkable that the lemma assumes nothing about the nature of the family : for instance may include all nonempty subsets. Since the weight of each set in is between and on average there will be sets of each possible weight. Still, with high probability, there is a unique set that has minimum weight.
Suppose we have fixed the weights of all elements except an element x. Then x has a threshold weight α, such that if the weight w(x) of x is greater than α, then it is not contained in any minimum-weight subset, and if , then it is contained in some sets of minimum weight. Further, observe that if , then every minimum-weight subset must contain x (since, when we decrease w(x) from α, sets that do not contain x do not decrease in weight, while those that contain x do). Thus, ambiguity about whether a minimum-weight subset contains x or not can happen only when the weight of x is exactly equal to its threshold; in this case we will call x "singular". Now, as the threshold of x was defined only in terms of the weights of the other elements, it is independent of w(x), and therefore, as w(x) is chosen uniformly from {1, …, N},
and the probability that somex is singular is at most n/N. As there is a unique minimum-weight subset iff no element is singular, the lemma follows.
Remark: The lemma holds with (rather than =) since it is possible that some x has no threshold value (i.e., x will not be in any minimum-weight subset even if w(x) gets the minimum possible value, 1).
This is a restatement version of the above proof, due to Joel Spencer (1995). [2]
For any element x in the set, define
Observe that depends only on the weights of elements other than x, and not on w(x) itself. So whatever the value of , as w(x) is chosen uniformly from {1, …, N}, the probability that it is equal to is at most 1/N. Thus the probability that for somex is at most n/N.
Now if there are two sets A and B in with minimum weight, then, taking any x in A\B, we have
and as we have seen, this event happens with probability at most n/N.
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space.
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
In mathematics, a base (or basis; pl.: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows:
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.
In statistics, the Neyman–Pearson lemma describes the existence and uniqueness of the likelihood ratio as a uniformly most powerful test in certain contexts. It was introduced by Jerzy Neyman and Egon Pearson in a paper in 1933. The Neyman–Pearson lemma is part of the Neyman–Pearson theory of statistical testing, which introduced concepts like errors of the second kind, power function, and inductive behavior. The previous Fisherian theory of significance testing postulated only one hypothesis. By introducing a competing hypothesis, the Neyman–Pearsonian flavor of statistical testing allows investigating the two types of errors. The trivial cases where one always rejects or accepts the null hypothesis are of little interest but it does prove that one must not relinquish control over one type of error while calibrating the other. Neyman and Pearson accordingly proceeded to restrict their attention to the class of all level tests while subsequently minimizing type II error, traditionally denoted by . Their seminal paper of 1933, including the Neyman–Pearson lemma, comes at the end of this endeavor, not only showing the existence of tests with the most power that retain a prespecified level of type I error, but also providing a way to construct such tests. The Karlin-Rubin theorem extends the Neyman–Pearson lemma to settings involving composite hypotheses with monotone likelihood ratios.
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors, in which case the mixture distribution is a multivariate distribution.
The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory.
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.
A Dynkin system, named after Eugene Dynkin, is a collection of subsets of another universal set satisfying a set of axioms weaker than those of 𝜎-algebra. Dynkin systems are sometimes referred to as 𝜆-systems or d-system. These set families have applications in measure theory and probability.
The Valiant–Vazirani theorem is a theorem in computational complexity theory stating that if there is a polynomial time algorithm for Unambiguous-SAT, then NP = RP. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986.
Vijay Virkumar Vazirani is an Indian American distinguished professor of computer science in the Donald Bren School of Information and Computer Sciences at the University of California, Irvine.
In the mathematical field of dynamical systems, a random dynamical system is a dynamical system in which the equations of motion have an element of randomness to them. Random dynamical systems are characterized by a state space S, a set of maps from S into itself that can be thought of as the set of all possible equations of motion, and a probability distribution Q on the set that represents the random choice of map. Motion in a random dynamical system can be informally thought of as a state evolving according to a succession of maps randomly chosen according to the distribution Q.
Linear Programming Boosting (LPBoost) is a supervised classifier from the boosting family of classifiers. LPBoost maximizes a margin between training samples of different classes and hence also belongs to the class of margin-maximizing supervised classification algorithms. Consider a classification function
In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.
In computer science and operations research, randomized rounding is a widely used approach for designing and analyzing approximation algorithms.
In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.
Regularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution.
In PAC learning, error tolerance refers to the ability of an algorithm to learn when the examples received have been corrupted in some way. In fact, this is a very common and important issue since in many applications it is not possible to access noise-free data. Noise can interfere with the learning process at different levels: the algorithm may receive data that have been occasionally mislabeled, or the inputs may have some false information, or the classification of the examples may have been maliciously adulterated.