L-balance theorem

Last updated

In mathematical finite group theory, the L-balance theorem was proved by Gorenstein & Walter (1975). The letter L stands for the layer of a group, and "balance" refers to the property discussed below.

Statement

The L-balance theorem of Gorenstein and Walter states that if X is a finite group and T a 2-subgroup of X then

Here L2(X) stands for the 2-layer of a group X, which is the product of all the 2-components of the group, the minimal subnormal subgroups of X mapping onto components of X/O(X).

A consequence is that if a and b are commuting involutions of a group G then

This is the property called L-balance.

More generally similar results are true if the prime 2 is replaced by a prime p, and in this case the condition is called Lp-balance, but the proof of this requires the classification of finite simple groups (more precisely the Schreier conjecture).

Related Research Articles

Classification of finite simple groups Massive theorem assigning all but 27 finite simple groups to a few infinite families

In mathematics, the classification of the finite simple groups is a theorem stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. Group theory is central to many areas of pure and applied mathematics and the classification theorem has been called one of the great intellectual achievements of humanity. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

Solvable group

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In mathematical finite group theory, the Thompson subgroup of a finite p-group P refers to one of several characteristic subgroups of P. John G. Thompson (1964) originally defined to be the subgroup generated by the abelian subgroups of P of maximal rank. More often the Thompson subgroup is defined to be the subgroup generated by the abelian subgroups of P of maximal order or the subgroup generated by the elementary abelian subgroups of P of maximal rank. In general these three subgroups can be different, though they are all called the Thompson subgroup and denoted by .

In mathematics, George Glauberman's Z* theorem is stated as follows:

Z* theorem: Let G be a finite group, with O(G) being its maximal normal subgroup of odd order. If T is a Sylow 2-subgroup of G containing an involution not conjugate in G to any other element of T, then the involution lies in Z*(G), which is the inverse image in G of the center of G/O(G).

In mathematics, George Glauberman's ZJ theorem states that if a finite group G is p-constrained and p-stable and has a normal p-subgroup for some odd prime p, then Op(G)Z(J ) is a normal subgroup of G, for any Sylow p-subgroupS.

Brauer's main theorems are three theorems in representation theory of finite groups linking the blocks of a finite group with those of its p-local subgroups, that is to say, the normalizers of its non-trivial p-subgroups.

In mathematics, a p-constrained group is a finite group resembling the centralizer of an element of prime order p in a group of Lie type over a finite field of characteristic p. They were introduced by Gorenstein and Walter (1964, p.169) in order to extend some of Thompson's results about odd groups to groups with dihedral Sylow 2-subgroups.

In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.

Jonathan Lazare Alperin American mathematician

Jonathan Lazare Alperin is an American mathematician specializing in the area of algebra known as group theory. He is notable for his work in group theory which has been cited over 500 times according to the Mathematical Reviews. The Alperin–Brauer–Gorenstein theorem is named after him.

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

In mathematics, a signalizer functor gives the intersections of a potential subgroup of a finite group with the centralizers of nontrivial elements of an abelian group. The signalizer functor theorem gives conditions under which a signalizer functor comes from a subgroup. The idea is to try to construct a -subgroup of a finite group , which has a good chance of being normal in , by taking as generators certain -subgroups of the centralizers of nonidentity elements in one or several given noncyclic elementary abelian -subgroups of The technique has origins in the Feit–Thompson theorem, and was subsequently developed by many people including Gorenstein (1969) who defined signalizer functors, Glauberman (1976) who proved the Solvable Signalizer Functor Theorem for solvable groups, and McBride who proved it for all groups. This theorem is needed to prove the so-called "dichotomy" stating that a given nonabelian finite simple group either has local characteristic two, or is of component type. It thus plays a major role in the classification of finite simple groups.

In mathematical finite group theory, an N-group is a group all of whose local subgroups are solvable groups. The non-solvable ones were classified by Thompson during his work on finding all the minimal finite simple groups.

In mathematics, the Gorenstein–Walter theorem, proved by Gorenstein and Walter (1965a, 1965b, 1965c), states that if a finite group G has a dihedral Sylow 2-subgroup, and O(G) is the maximal normal subgroup of odd order, then G/O(G) is isomorphic to a 2-group, or the alternating group A7, or a subgroup of PΓL2(q) containing PSL2(q) for q an odd prime power. Note that A5 ≈ PSL2(4) ≈ PSL2(5) and A6 ≈ PSL2(9).

In mathematical finite group theory, the Baer–Suzuki theorem, proved by Baer (1957) and Suzuki (1965), states that if any two elements of a conjugacy class C of a finite group generate a nilpotent subgroup, then all elements of the conjugacy class C are contained in a nilpotent subgroup. Alperin & Lyons (1971) gave a short elementary proof.

In mathematics, the Walter theorem, proved by John H. Walter, describes the finite groups whose Sylow 2-subgroup is abelian. Bender (1970) used Bender's method to give a simpler proof.

In finite group theory, a p-stable group for an odd prime p is a finite group satisfying a technical condition introduced by Gorenstein and Walter in order to extend Thompson's uniqueness results in the odd order theorem to groups with dihedral Sylow 2-subgroups.

John Harris Walter is an American mathematician known for proving the Walter theorem in the theory of finite groups.

In mathematical group theory, the Thompson replacement theorem is a theorem about the existence of certain abelian subgroups of a p-group. The Glauberman replacement theorem is a generalization of it introduced by Glauberman.

In the mathematical subject of group theory, the Howson property, also known as the finitely generated intersection property (FGIP), is the property of a group saying that the intersection of any two finitely generated subgroups of this group is again finitely generated. The property is named after Albert G. Howson who in a 1954 paper established that free groups have this property.

References