LOMAC

Last updated

Low Water-Mark Mandatory Access Control (LOMAC) is a Mandatory Access Control model which protects the integrity of system objects and subjects by means of an information flow policy coupled with the subject demotion via floating labels. In LOMAC, all system subjects and objects are assigned integrity labels, made up of one or more hierarchical grades, depending on their types. Together, these label elements permit all labels to be placed in a partial order, with information flow protections and demotion decisions based on a dominance operator describing the order.

Contents

Implementations

See also

Related Research Articles

In the security engineering subspecialty of computer science, a trusted system is one that is relied upon to a specified extent to enforce a specified security policy. This is equivalent to saying that a trusted system is one whose failure would break a security policy.

<span class="mw-page-title-main">Security-Enhanced Linux</span> Linux kernel security module

Security-Enhanced Linux (SELinux) is a Linux kernel security module that provides a mechanism for supporting access control security policies, including mandatory access controls (MAC).

The Bell–LaPadula model (BLP) is a state machine model used for enforcing access control in government and military applications. It was developed by David Elliott Bell, and Leonard J. LaPadula, subsequent to strong guidance from Roger R. Schell, to formalize the U.S. Department of Defense (DoD) multilevel security (MLS) policy. The model is a formal state transition model of computer security policy that describes a set of access control rules which use security labels on objects and clearances for subjects. Security labels range from the most sensitive, down to the least sensitive.

The Biba Model or Biba Integrity Model developed by Kenneth J. Biba in 1975, is a formal state transition system of computer security policy describing a set of access control rules designed to ensure data integrity. Data and subjects are grouped into ordered levels of integrity. The model is designed so that subjects may not corrupt data in a level ranked higher than the subject, or be corrupted by data from a lower level than the subject.

Rule-set-based access control (RSBAC) is an open source access control framework for current Linux kernels, which has been in stable production use since January 2000.

Trusted Solaris is a discontinued security-evaluated operating system based on Solaris by Sun Microsystems, featuring a mandatory access control model.

In computer security, mandatory access control (MAC) refers to a type of access control by which the operating system or database constrains the ability of a subject or initiator to access or generally perform some sort of operation on an object or target. In the case of operating systems, a subject is usually a process or thread; objects are constructs such as files, directories, TCP/UDP ports, shared memory segments, IO devices, etc. Subjects and objects each have a set of security attributes. Whenever a subject attempts to access an object, an authorization rule enforced by the operating system kernel examines these security attributes and decides whether the access can take place. Any operation by any subject on any object is tested against the set of authorization rules to determine if the operation is allowed. A database management system, in its access control mechanism, can also apply mandatory access control; in this case, the objects are tables, views, procedures, etc.

In computer security, discretionary access control (DAC) is a type of access control defined by the Trusted Computer System Evaluation Criteria (TCSEC) as a means of restricting access to objects based on the identity of subjects and/or groups to which they belong. The controls are discretionary in the sense that a subject with a certain access permission is capable of passing that permission on to any other subject.

Multilevel security or multiple levels of security (MLS) is the application of a computer system to process information with incompatible classifications, permit access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization. There are two contexts for the use of multilevel security.

The Clark–Wilson integrity model provides a foundation for specifying and analyzing an integrity policy for a computing system.

In the fields of physical security and information security, the high-water mark for access control was introduced by Clark Weissmann in 1969. It pre-dates the Bell–LaPadula security model, whose first volume appeared in 1972.

The concept of type enforcement (TE), in the field of information technology, is an access control mechanism for regulating access in computer systems. Implementing TE gives priority to mandatory access control (MAC) over discretionary access control (DAC). Access clearance is first given to a subject accessing objects based on rules defined in an attached security context. A security context in a domain is defined by a domain security policy. In the Linux security module (LSM) in SELinux, the security context is an extended attribute. Type enforcement implementation is a prerequisite for MAC, and a first step before multilevel security (MLS) or its replacement multi categories security (MCS). It is a complement of role-based access control (RBAC).

Multi categories security (MCS) is an access control method in Security-Enhanced Linux that uses categories attached to objects (files) and granted to subjects at the operating system level. The implementation in Fedora Core 5 is advisory because there is nothing stopping a process from increasing its access. The eventual aim is to make MCS a hierarchical mandatory access control system. Currently, MCS controls access to files and to ptrace or kill processes. The level of control MCS should have over access to directories and other file system objects has not yet been decided.

In computer security, lattice-based access control (LBAC) is a complex access control model based on the interaction between any combination of objects and subjects.

The XTS-400 is a multilevel secure computer operating system. It is multiuser and multitasking that uses multilevel scheduling in processing data and information. It works in networked environments and supports Gigabit Ethernet and both IPv4 and IPv6.

Solaris Trusted Extensions is a set of security extensions incorporated in the Solaris 10 operating system by Sun Microsystems, featuring a mandatory access control model. It succeeds Trusted Solaris, a family of security-evaluated operating systems based on earlier versions of Solaris.

Attribute-based access control (ABAC), also known as policy-based access control for IAM, defines an access control paradigm whereby a subject's authorization to perform a set of operations is determined by evaluating attributes associated with the subject, object, requested operations, and, in some cases, environment attributes.

Mandatory Integrity Control (MIC) is a core security feature of Windows Vista and later that adds mandatory access control to running processes based on their Integrity Level (IL). The IL represents the level of trustworthiness of an object. This mechanism's goal is to restrict the access permissions for potentially less trustworthy contexts, compared with other contexts running under the same user account that are more trusted.

<span class="mw-page-title-main">Trusted Computer System Evaluation Criteria</span>

Trusted Computer System Evaluation Criteria (TCSEC) is a United States Government Department of Defense (DoD) standard that sets basic requirements for assessing the effectiveness of computer security controls built into a computer system. The TCSEC was used to evaluate, classify, and select computer systems being considered for the processing, storage, and retrieval of sensitive or classified information.

In computer security, general access control includes identification, authorization, authentication, access approval, and audit. A more narrow definition of access control would cover only access approval, whereby the system makes a decision to grant or reject an access request from an already authenticated subject, based on what the subject is authorized to access. Authentication and access control are often combined into a single operation, so that access is approved based on successful authentication, or based on an anonymous access token. Authentication methods and tokens include passwords, biometric scans, physical keys, electronic keys and devices, hidden paths, social barriers, and monitoring by humans and automated systems.

References

  1. "Mac_lomac".
  2. "LOMAC".