Label propagation algorithm

Last updated

Label propagation is a semi-supervised machine learning algorithm that assigns labels to previously unlabeled data points. At the start of the algorithm, a (generally small) subset of the data points have labels (or classifications). These labels are propagated to the unlabeled points throughout the course of the algorithm. [1]

Contents

Within complex networks, real networks tend to have community structure. Label propagation is an algorithm [2] for finding communities. In comparison with other algorithms [3] label propagation has advantages in its running time and amount of a priori information needed about the network structure (no parameter is required to be known beforehand). The disadvantage is that it produces no unique solution, but an aggregate of many solutions.

Functioning of the algorithm

At initial condition, the nodes carry a label that denotes the community they belong to. Membership in a community changes based on the labels that the neighboring nodes possess. This change is subject to the maximum number of labels within one degree of the nodes. Every node is initialized with a unique label, then the labels diffuse through the network. Consequently, densely connected groups reach a common label quickly. When many such dense (consensus) groups are created throughout the network, they continue to expand outwards until it is impossible to do so. [2]

The process has 5 steps: [2]

1. Initialize the labels at all nodes in the network. For a given node x, Cx (0) = x.

2. Set t = 1.

3. Arrange the nodes in the network in a random order and set it to X.

4. For each x ∈ X chosen in that specific order, let Cx(t) = f(Cxi1(t), ...,Cxim(t),Cxi(m+1) (t − 1), ...,Cxik (t − 1)). Here returns the label occurring with the highest frequency among neighbours. Select a label at random if there are multiple highest frequency labels.

5. If every node has a label that the maximum number of their neighbours have, then stop the algorithm. Else, set t = t + 1 and go to (3).

Application in text classification and machine learning

Label propagation offers an efficient solution to the challenge of labeling datasets in machine learning by reducing the need for manual labels. Text classification utilizes a graph-based technique, where the nearest neighbor graph is built from network embeddings, and labels are extended based on cosine similarity by merging these pseudo-labeled data points into supervised learning. [4]

Multiple community structure

In contrast with other algorithms label propagation can result in various community structures from the same initial condition. The range of solutions can be narrowed if some nodes are given preliminary labels while others are held unlabelled. Consequently, unlabelled nodes will be more likely to adapt to the labelled ones. For a more accurate finding of communities, Jaccard’s index is used to aggregate multiple community structures, containing all important information. [2]

Related Research Articles

<span class="mw-page-title-main">Supervised learning</span> Paradigm in machine learning

Supervised learning (SL) is a paradigm in machine learning where input objects and a desired output value train a model. The training data is processed, building a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured through the so-called generalization error.

<span class="mw-page-title-main">Dijkstra's algorithm</span> Algorithm for finding shortest paths

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

<span class="mw-page-title-main">Computational biology</span> Branch of biology

Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has foundations in applied mathematics, chemistry, and genetics. It differs from biological computing, a subfield of computer science and engineering which uses bioengineering to build computers.

Belief propagation, also known as sum–product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node, conditional on any observed nodes. Belief propagation is commonly used in artificial intelligence and information theory, and has demonstrated empirical success in numerous applications, including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability.

In mathematics, computer science and especially graph theory, a distance matrix is a square matrix containing the distances, taken pairwise, between the elements of a set. Depending upon the application involved, the distance being used to define this matrix may or may not be a metric. If there are N elements, this matrix will have size N×N. In graph-theoretic applications, the elements are more often referred to as points, nodes or vertices.

In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method first developed by Evelyn Fix and Joseph Hodges in 1951, and later expanded by Thomas Cover. It is used for classification and regression. In both cases, the input consists of the k closest training examples in a data set. The output depends on whether k-NN is used for classification or regression:

Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account. To do so, the predictions are modelled as a graphical model, which represents the presence of dependencies between the predictions. What kind of graph is used depends on the application. For example, in natural language processing, "linear chain" CRFs are popular, for which each prediction is dependent only on its immediate neighbours. In image processing, the graph typically connects locations to nearby and/or similar locations to enforce that they receive similar predictions.

<span class="mw-page-title-main">Junction tree algorithm</span>

The junction tree algorithm is a method used in machine learning to extract marginalization in general graphs. In essence, it entails performing belief propagation on a modified graph called a junction tree. The graph is called a tree because it branches into different sections of data; nodes of variables are the branches. The basic premise is to eliminate cycles by clustering them into single nodes. Multiple extensive classes of queries can be compiled at the same time into larger structures of data. There are different algorithms to meet specific needs and for what needs to be calculated. Inference algorithms gather new developments in the data and calculate it based on the new information provided.

<span class="mw-page-title-main">Community structure</span> Concept in graph theory

In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into sets of nodes such that each set of nodes is densely connected internally. In the particular case of non-overlapping community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But overlapping communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to.

<span class="mw-page-title-main">Network motif</span> Type of sub-graph

Network motifs are recurrent and statistically significant subgraphs or patterns of a larger graph. All networks, including biological networks, social networks, technological networks and more, can be represented as graphs, which include a wide variety of subgraphs.

<span class="mw-page-title-main">Spectral clustering</span> Clustering methods

In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset.

In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary. This is different from and more difficult than the traditional classification problem, which tries to distinguish between two or more classes with the training set containing objects from all the classes. Examples include the monitoring of helicopter gearboxes, motor failure prediction, or the operational status of a nuclear plant as 'normal': In this scenario, there are few, if any, examples of catastrophic system states; only the statistics of normal operation are known.

The random walker algorithm is an algorithm for image segmentation. In the first description of the algorithm, a user interactively labels a small number of pixels with known labels, e.g., "object" and "background". The unlabeled pixels are each imagined to release a random walker, and the probability is computed that each pixel's random walker first arrives at a seed bearing each label, i.e., if a user places K seeds, each with a different label, then it is necessary to compute, for each pixel, the probability that a random walker leaving the pixel will first arrive at each seed. These probabilities may be determined analytically by solving a system of linear equations. After computing these probabilities for each pixel, the pixel is assigned to the label for which it is most likely to send a random walker. The image is modeled as a graph, in which each pixel corresponds to a node which is connected to neighboring pixels by edges, and the edges are weighted to reflect the similarity between the pixels. Therefore, the random walk occurs on the weighted graph.

Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user, to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources when necessary. In statistics literature, it is sometimes also called optimal experimental design. The information source is also called teacher or oracle.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

<span class="mw-page-title-main">Domain adaptation</span> Field associated with machine learning and transfer learning

Domain adaptation is a field associated with machine learning and transfer learning. This scenario arises when we aim at learning a model from a source data distribution and applying that model on a different target data distribution. For instance, one of the tasks of the common spam filtering problem consists in adapting a model from one user to a new user who receives significantly different emails. Domain adaptation has also been shown to be beneficial to learning unrelated sources. Note that, when more than one source distribution is available the problem is referred to as multi-source domain adaptation.

<span class="mw-page-title-main">Manifold regularization</span>

In machine learning, Manifold regularization is a technique for using the shape of a dataset to constrain the functions that should be learned on that dataset. In many machine learning problems, the data to be learned do not cover the entire input space. For example, a facial recognition system may not need to classify any possible image, but only the subset of images that contain faces. The technique of manifold learning assumes that the relevant subset of data comes from a manifold, a mathematical structure with useful properties. The technique also assumes that the function to be learned is smooth: data with different labels are not likely to be close together, and so the labeling function should not change quickly in areas where there are likely to be many data points. Because of this assumption, a manifold regularization algorithm can use unlabeled data to inform where the learned function is allowed to change quickly and where it is not, using an extension of the technique of Tikhonov regularization. Manifold regularization algorithms can extend supervised learning algorithms in semi-supervised learning and transductive learning settings, where unlabeled data are available. The technique has been used for applications including medical imaging, geographical imaging, and object recognition.

Weak supervision is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data, followed by a large amount of unlabeled data. In other words, the desired output values are provided only for a subset of the training data. The remaining data is unlabeled or imprecisely labeled. Intuitively, it can be seen as an exam and labeled data as sample problems that the teacher solves for the class as an aid in solving another set of problems. In the transductive setting, these unsolved problems act as exam questions. In the inductive setting, they become practice problems of the sort that will make up the exam. Technically, it could be viewed as performing clustering and then labeling the clusters with the labeled data, pushing the decision boundary away from high-density regions, or learning an underlying one-dimensional manifold where the data reside.

In network theory, collective classification is the simultaneous prediction of the labels for multiple objects, where each label is predicted using information about the object's observed features, the observed features and labels of its neighbors, and the unobserved labels of its neighbors. Collective classification problems are defined in terms of networks of random variables, where the network structure determines the relationship between the random variables. Inference is performed on multiple random variables simultaneously, typically by propagating information between nodes in the network to perform approximate inference. Approaches that use collective classification can make use of relational information when performing inference. Examples of collective classification include predicting attributes of individuals in a social network, classifying webpages in the World Wide Web, and inferring the research area of a paper in a scientific publication dataset.

A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.

References

  1. Zhu, Xiaojin (2002). "Learning From Labeled and Unlabeled Data With Label Propagation". CiteSeerX   10.1.1.14.3864 .{{cite journal}}: Cite journal requires |journal= (help)
  2. 1 2 3 4 U.N.Raghavan – R. Albert – S. Kumara "Near linear time algorithm to detect community structures in large-scale networks", 2007
  3. M. E. J. Newman, "Detecting community structure in networks", 2004
  4. Jafarlou, Minoo; Kubek, Mario M. (2024). "Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning". arXiv: 2410.11355 [cs.LG].