Lasing without inversion

Last updated

Lasing without inversion (LWI), [1] or lasing without population inversion, is a technique used for light amplification by stimulated emission without the requirement of population inversion. [2] A laser working under this scheme exploits the quantum interference between the probability amplitudes of atomic transitions in order to eliminate absorption without disturbing the stimulated emission. [3] This phenomenon is also the essence of electromagnetically induced transparency. [4]

The basic LWI concept was first predicted by Ali Javan in 1956. [5] [6] The first demonstration of LWI was carried out by Marlan Scully in an experiment in rubidium and sodium at Texas A&M University, and then at NIST in Boulder. [7]

Related Research Articles

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Maser</span> Microwave Amplification by Stimulated Emission of Radiation

A maser is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The first maser was built by Charles H. Townes, James P. Gordon, and Herbert J. Zeiger at Columbia University in 1953. Townes, Nikolay Basov and Alexander Prokhorov were awarded the 1964 Nobel Prize in Physics for theoretical work leading to the maser. Masers are also used as the timekeeping device in atomic clocks, and as extremely low-noise microwave amplifiers in radio telescopes and deep space spacecraft communication ground stations.

Spontaneous emission is the process in which a quantum mechanical system transits from an excited energy state to a lower energy state and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced. If the excitation is affected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

<span class="mw-page-title-main">Ti-sapphire laser</span>

Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing.

<span class="mw-page-title-main">Electromagnetically induced transparency</span>

Electromagnetically induced transparency (EIT) is a coherent optical nonlinearity which renders a medium transparent within a narrow spectral range around an absorption line. Extreme dispersion is also created within this transparency "window" which leads to "slow light", described below. It is in essence a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium.

A Raman laser is a specific type of laser in which the fundamental light-amplification mechanism is stimulated Raman scattering. In contrast, most "conventional" lasers rely on stimulated electronic transitions to amplify light.

In quantum mechanics, the quantum eraser experiment is an interferometer experiment that demonstrates several fundamental aspects of quantum mechanics, including quantum entanglement and complementarity. The quantum eraser experiment is a variation of Thomas Young's classic double-slit experiment. It establishes that when action is taken to determine which of 2 slits a photon has passed through, the photon cannot interfere with itself. When a stream of photons is marked in this way, then the interference fringes characteristic of the Young experiment will not be seen. The experiment also creates situations in which a photon that has been "marked" to reveal through which slit it has passed can later be "unmarked." A photon that has been "marked" cannot interfere with itself and will not produce fringe patterns, but a photon that has been "marked" and then "unmarked" will interfere with itself and produce the fringes characteristic of Young's experiment.

Marlan Orvil Scully is an American physicist best known for his work in theoretical quantum optics. He is a professor at Texas A&M University and Princeton University. Additionally, in 2012 he developed a lab at the Baylor Research and Innovation Collaborative in Waco, Texas.

A spaser or plasmonic laser is a type of laser which aims to confine light at a subwavelength scale far below Rayleigh's diffraction limit of light, by storing some of the light energy in electron oscillations called surface plasmon polaritons. The phenomenon was first described by David J. Bergman and Mark Stockman in 2003. The word spaser is an acronym for "surface plasmon amplification by stimulated emission of radiation". The first such devices were announced in 2009 by three groups: a 44-nanometer-diameter nanoparticle with a gold core surrounded by a dyed silica gain medium created by researchers from Purdue, Norfolk State and Cornell universities, a nanowire on a silver screen by a Berkeley group, and a semiconductor layer of 90 nm surrounded by silver pumped electrically by groups at the Eindhoven University of Technology and at Arizona State University. While the Purdue-Norfolk State-Cornell team demonstrated the confined plasmonic mode, the Berkeley team and the Eindhoven-Arizona State team demonstrated lasing in the so-called plasmonic gap mode. In 2018, a team from Northwestern University demonstrated a tunable nanolaser that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism.

In physics, quantum beats are simple examples of phenomena that cannot be described by semiclassical theory, but can be described by fully quantized calculation, especially quantum electrodynamics. In semiclassical theory (SCT), there is an interference or beat note term for both V-type and -type atoms. However, in the quantum electrodynamic (QED) calculation, V-type atoms have a beat term but -types do not. This is strong evidence in support of quantum electrodynamics.

Muhammad Suhail Zubairy, HI, SI, FPAS, is a University Distinguished Professor in the Department of Physics and Astronomy at the Texas A&M University and is the inaugural holder of the Munnerlyn-Heep Chair in Quantum Optics. In 2017, Prof. Suhail Zubairy was awarded the Changjiang Distinguished Chair at Huazhong University of Science and Technology. This is the highest award of the Chinese Government to a university professor and is rarely given to a non-Chinese. He has made pioneering contributions in the fields of Quantum computing, laser physics and quantum optics. He has authored and co-authored several books and over 300 research papers on a wide variety of research problems relating to theoretical physics. His research and work has been widely recognised by the physics community and he has won many international awards. In addition, he took part as the lead lecturer in the Casper College Quantum Science Camp during July of 2022.

Laser linewidth is the spectral linewidth of a laser beam.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

A polariton laser is a novel type of laser source that exploits the coherent nature of Bose condensates of exciton-polaritons in semiconductors to achieve ultra-low threshold lasing.

Single-photon sources are light sources that emit light as single particles or photons. They are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state. Photons from an ideal single-photon source exhibit quantum mechanical characteristics. These characteristics include photon antibunching, so that the time between two successive photons is never less than some minimum value. This is normally demonstrated by using a beam splitter to direct about half of the incident photons toward one avalanche photodiode, and half toward a second. Pulses from one detector are used to provide a ‘counter start’ signal, to a fast electronic timer, and the other, delayed by a known number of nanoseconds, is used to provide a ‘counter stop’ signal. By repeatedly measuring the times between ‘start’ and ‘stop’ signals, one can form a histogram of time delay between two photons and the coincidence count- if bunching is not occurring, and photons are indeed well spaced, a clear notch around zero delay is visible.

<span class="mw-page-title-main">International Conference of Laser Applications</span>

The International Conference on Lasers and Applications, Lasers 'XX was an annual conference organized by the former Society for Optical and Quantum Electronics. The conference, known in short by Lasers 'XX, was held at various locations in The United States from 1978 to 2000.

<span class="mw-page-title-main">Stephen E. Harris</span> American physicist (born 1936)

Stephen Ernest Harris is an American physicist known for his contributions to electromagnetically induced transparency (EIT), modulation of single photons, and x-ray emission.

<span class="mw-page-title-main">Carlos Stroud</span> American physicist

Carlos Ray Stroud, Jr. is an American physicist and an educator. A pioneer in the field of quantum optics, Stroud has carried out theoretical and experimental studies in most areas of the field from its beginnings in the late 1960s, studying the fundamentals of the quantum mechanics of atoms and light and their interaction. He has authored over 140 peer-reviewed papers and edited seven books. He is a fellow of the American Physical Society and the Optical Society of America, as well as a Distinguished Traveling Lecturer of the Division of Laser Science of the American Physical Society. In this latter position he travels to smaller colleges giving colloquia and public lectures.

<span class="mw-page-title-main">Vitaly Kocharovsky</span> Russian physicist

Vitaly Kocharovsky is a Russian-American physicist, academic and researcher. He is a Professor of Physics and Astronomy at Texas A&M University.

References

  1. Marvin J. Weber. Handbook of Lasers. CRC Press. 2019. p. 1151. ISBN   978-1-4200-5017-2.
  2. Harris, S. E. (1989). "Lasers without inversion: Interference of lifetime-broadened resonances". Physical Review Letters. 62 (9): 1033–1036. Bibcode:1989PhRvL..62.1033H. doi:10.1103/PhysRevLett.62.1033. PMID   10040407.
  3. Mompart, J.; Corbalán, R. (2000). "Lasing without inversion" (PDF). J. Opt. B. 2 (3): R7–R24. Bibcode:2000JOptB...2R...7M. doi:10.1088/1464-4266/2/3/201. S2CID   121209763. Archived from the original (PDF) on 2020-01-01.
  4. Scully, M., & Zubairy, M. (1997). Chapter 7. In Quantum optics (p. 220). Cambridge: Cambridge University Press.
  5. Scully, M., & Zubairy, M. (1997). Chapter 7. In Quantum optics (p. 245). Cambridge: Cambridge University Press.
  6. A. Javan, Phys. Rev. 107, 1579 (1956)
  7. Javan, A. (2000). "On knowing Marlan". In Ode to a quantum physicist: A festschrift in honor of Marlan O. Scully. Elsevier.