This article needs additional citations for verification . (March 2020) (Learn how and when to remove this template message) |
L2F, or Layer 2 Forwarding, is a tunneling protocol developed by Cisco Systems, Inc. to establish virtual private network connections over the Internet. L2F does not provide encryption or confidentiality by itself; It relies on the protocol being tunneled to provide privacy. L2F was specifically designed to tunnel Point-to-Point Protocol (PPP) traffic. [1]
Virtual dial-up allows many separate and autonomous protocol domains to share common access infrastructure including modems, Access Servers, and ISDN routers. RFCs prior to 2341 have specified protocols for supporting IP dial-up via SLIP and multiprotocol dial-up via PPP.
Bits 0-12 | 13-15 | 16-23 | 24-31 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | K | P | S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | Ver | Protocol | Sequence (opt) | ||||||||||||||||
Multiplex ID | Client ID | ||||||||||||||||||||||||||||||
Length | Payload offset (opt) | ||||||||||||||||||||||||||||||
Packet key (optional) | |||||||||||||||||||||||||||||||
Payload | |||||||||||||||||||||||||||||||
L2F Checksum (opt) |
Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on short path labels rather than long network addresses, thus avoiding complex lookups in a routing table and speeding traffic flows. The labels identify virtual links (paths) between distant nodes rather than endpoints. MPLS can encapsulate packets of various network protocols, hence the "multiprotocol" reference on its name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.
In computer networking, Point-to-Point Protocol (PPP) is a data link layer communications protocol between two routers directly without any host or any other networking in between. It can provide connection authentication, transmission encryption, and compression.
A virtual private network (VPN) extends a private network across a public network and enables users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network. Applications running on an end system across a VPN may therefore benefit from the functionality, security, and management of the private network. Encryption is a common, though not an inherent, part of a VPN connection.
The Point-to-Point Tunneling Protocol (PPTP) is an obsolete method for implementing virtual private networks. PPTP has many well known security issues.
Remote Authentication Dial-In User Service (RADIUS) is a networking protocol, operating on port 1812, that provides centralized Authentication, Authorization, and Accounting management for users who connect and use a network service. RADIUS was developed by Livingston Enterprises, Inc. in 1991 as an access server authentication and accounting protocol and later brought into the Internet Engineering Task Force (IETF) standards.
Extensible Messaging and Presence Protocol (XMPP) is a communication protocol for message-oriented middleware based on XML. It enables the near-real-time exchange of structured yet extensible data between any two or more network entities. Originally named Jabber, the protocol was developed by the eponymous open-source community in 1999 for near real-time instant messaging (IM), presence information, and contact list maintenance. Designed to be extensible, the protocol has been used also for publish-subscribe systems, signalling for VoIP, video, file transfer, gaming, the Internet of Things (IoT) applications such as the smart grid, and social networking services.
Layer 2 Tunnelling Protocol Version 3 is an IETF standard related to L2TP that can be used as an alternative protocol to Multiprotocol Label Switching (MPLS) for encapsulation of multiprotocol Layer 2 communications traffic over IP networks. Like L2TP, L2TPv3 provides a pseudo-wire service, but scaled to fit carrier requirements.
The Point-to-Point Protocol over Ethernet (PPPoE) is a network protocol for encapsulating PPP frames inside Ethernet frames. It appeared in 1999, in the context of the boom of DSL as the solution for tunneling packets over the DSL connection to the ISP's IP network, and from there to the rest of the Internet. A 2005 networking book noted that "Most DSL providers use PPPoE, which provides authentication, encryption, and compression." Typical use of PPPoE involves leveraging the PPP facilities for authenticating the user with a username and password, predominately via the PAP protocol and less often via CHAP.
In computer networking, the Point-to-Point Protocol over ATM (PPPoA) is a layer 2 data-link protocol typically used to connect domestic broadband modems to ISPs via phone lines. It is used mainly with DOCSIS and DSL carriers, by encapsulating PPP frames in ATM AAL5. Point-to-Point Protocol over Asynchronous Transfer Mode (PPPoA) is specified by The Internet Engineering Task Force (IETF) in RFC 2364.
In computer networking, Layer 2 Tunneling Protocol (L2TP) is a tunneling protocol used to support virtual private networks (VPNs) or as part of the delivery of services by ISPs. It does not provide any encryption or confidentiality by itself. Rather, it relies on an encryption protocol that it passes within the tunnel to provide privacy.
Generic Routing Encapsulation (GRE) is a tunneling protocol developed by Cisco Systems that can encapsulate a wide variety of network layer protocols inside virtual point-to-point links or point-to-multipoint links over an Internet Protocol network.
In computer networking and telecommunications, a pseudowire is an emulation of a point-to-point connection over a packet-switching network (PSN).
The Virtual Router Redundancy Protocol (VRRP) is a computer networking protocol that provides for automatic assignment of available Internet Protocol (IP) routers to participating hosts. This increases the availability and reliability of routing paths via automatic default gateway selections on an IP subnetwork.
In computer networks, a tunneling protocol is a communications protocol that allows for the movement of data from one network to another. It involves allowing private network communications to be sent across a public network through a process called encapsulation.
Datagram Transport Layer Security (DTLS) is a communications protocol that provides security for datagram-based applications by allowing them to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the stream-oriented Transport Layer Security (TLS) protocol and is intended to provide similar security guarantees. The DTLS protocol datagram preserves the semantics of the underlying transport—the application does not suffer from the delays associated with stream protocols, but because it uses UDP, the application has to deal with packet reordering, loss of datagram and data larger than the size of a datagram network packet. Because DTLS uses UDP rather than TCP, it avoids the "TCP meltdown problem", when being used to create a VPN tunnel.
Extensible Authentication Protocol (EAP) is an authentication framework frequently used in network and internet connections. It is defined in RFC 3748, which made RFC 2284 obsolete, and is updated by RFC 5247. EAP is an authentication framework for providing the transport and usage of material and parameters generated by EAP methods. There are many methods defined by RFCs and a number of vendor specific methods and new proposals exist. EAP is not a wire protocol; instead it only defines the information from the interface and the formats. Each protocol that uses EAP defines a way to encapsulate by the user EAP messages within that protocol's messages.
ISATAP is an IPv6 transition mechanism meant to transmit IPv6 packets between dual-stack nodes on top of an IPv4 network.
Data-Link Switching (DLSw) is a tunneling protocol designed to tunnel unroutable, non-IP based protocols such as IBM Systems Network Architecture (SNA) and NBF over an IP network.
Proxy Mobile IPv6 is a network-based mobility management protocol standardized by IETF and is specified in RFC 5213. It is a protocol for building a common and access technology independent of mobile core networks, accommodating various access technologies such as WiMAX, 3GPP, 3GPP2 and WLAN based access architectures. Proxy Mobile IPv6 is the only network-based mobility management protocol standardized by IETF.
Virtual Extensible LAN (VXLAN) is a network virtualization technology that attempts to address the scalability problems associated with large cloud computing deployments. It uses a VLAN-like encapsulation technique to encapsulate OSI layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default IANA-assigned destination UDP port number. VXLAN endpoints, which terminate VXLAN tunnels and may be either virtual or physical switch ports, are known as VXLAN tunnel endpoints (VTEPs).