Lehmer pair

Last updated

In the study of the Riemann hypothesis, a Lehmer pair is a pair of zeros of the Riemann zeta function that are unusually close to each other. [1] They are named after Derrick Henry Lehmer, who discovered the pair of zeros

(the 6709th and 6710th zeros of the zeta function). [2]

Unsolved problem in mathematics:

Are there infinitely many Lehmer pairs?

More precisely, a Lehmer pair can be defined as having the property that their complex coordinates and obey the inequality

for a constant . [3]

It is an unsolved problem whether there exist infinitely many Lehmer pairs. [3] If so, it would imply that the De Bruijn–Newman constant is non-negative, a fact that has been proven unconditionally by Brad Rodgers and Terence Tao. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

The de Bruijn–Newman constant, denoted by Λ and named after Nicolaas Govert de Bruijn and Charles Michael Newman, is a mathematical constant defined via the zeros of a certain function H(λ,z), where λ is a real parameter and z is a complex variable. More precisely,

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant usually denoted by the lowercase Greek letter gamma.

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

In mathematics, the Hilbert–Pólya conjecture states that the non-trivial zeros of the Riemann zeta function correspond to eigenvalues of a self-adjoint operator. It is a possible approach to the Riemann hypothesis, by means of spectral theory.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as

In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted A, is a mathematical constant, related to the K-function and the Barnes G-function. The constant appears in a number of sums and integrals, especially those involving gamma functions and zeta functions. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted ζ(s) and is named after the mathematician Bernhard Riemann. When the argument s is a real number greater than one, the zeta function satisfies the equation

The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function

<span class="mw-page-title-main">Riemann Xi function</span>

In mathematics, the Riemann Xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann.

In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

In mathematics, the Riemann–Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function, an approximation of the zeta function by a sum of two finite Dirichlet series. It was found by Siegel (1932) in unpublished manuscripts of Bernhard Riemann dating from the 1850s. Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably. When used along the critical line, it is often useful to use it in a form where it becomes a formula for the Z function.

<span class="mw-page-title-main">Montgomery's pair correlation conjecture</span>

In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery (1973) that the pair correlation between pairs of zeros of the Riemann zeta function is

In mathematics, the Airy zeta function, studied by Crandall (1996), is a function analogous to the Riemann zeta function and related to the zeros of the Airy function.

References

  1. Csordas, George; Smith, Wayne; Varga, Richard S. (1994), "Lehmer pairs of zeros, the de Bruijn-Newman constant Λ, and the Riemann hypothesis", Constructive Approximation , 10 (1): 107–129, doi:10.1007/BF01205170, MR   1260363
  2. Lehmer, D. H. (1956), "On the roots of the Riemann zeta-function", Acta Mathematica , 95: 291–298, doi: 10.1007/BF02401102 , MR   0086082
  3. 1 2 Tao, Terence (January 20, 2018), "Lehmer pairs and GUE", What's New
  4. Rodgers, Brad; Tao, Terence (2020) [2018], "The De Bruijn–Newman constant is non-negative", Forum Math. Pi , 8, arXiv: 1801.05914 , Bibcode:2018arXiv180105914R, doi:10.1017/fmp.2020.6, MR   4089393