Lexical substitution

Last updated

Lexical substitution is the task of identifying a substitute for a word in the context of a clause. For instance, given the following text: "After the match, replace any remaining fluid deficit to prevent chronic dehydration throughout the tournament", a substitute of game might be given.

Contents

Lexical substitution is strictly related to word sense disambiguation (WSD), in that both aim to determine the meaning of a word. However, while WSD consists of automatically assigning the appropriate sense from a fixed sense inventory, lexical substitution does not impose any constraint on which substitute to choose as the best representative for the word in context. By not prescribing the inventory, lexical substitution overcomes the issue of the granularity of sense distinctions and provides a level playing field for automatic systems that automatically acquire word senses (a task referred to as Word Sense Induction).

Evaluation

In order to evaluate automatic systems on lexical substitution, a task was organized at the Semeval-2007 evaluation competition held in Prague in 2007. A Semeval-2010 task on cross-lingual lexical substitution has also taken place.

Skip-gram model

The skip-gram model takes words with similar meanings into a vector space (collection of objects that can be added together and multiplied by numbers) that are found close to each other in N-dimensions (list of items). A variety of neural networks (computer system modeled after a human brain) are formed together as a result of the vectors and networks that are related together. This all occurs in the dimensions of the vocabulary that has been generated in a network. [1] The model has been used in lexical substitution automation and prediction algorithms. One such algorithm developed by Oren Melamud, Omer Levy, and Ido Dagan uses the skip-gram model to find a vector for each word and its synonyms. Then, it calculates the cosine distance between vectors to determine which words will be the best substitutes. [2]

Example

In a sentence like "The dog walked at a quick pace" each word has a specific vector in relation to the other. The vector for "The" would be [1,0,0,0,0,0,0] because the 1 is the word vocabulary and the 0s are the words surrounding that vocabulary, which create a vector.

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">WordNet</span> Computational lexicon of English

WordNet is a lexical database of semantic relations between words that links words into semantic relations including synonyms, hyponyms, and meronyms. The synonyms are grouped into synsets with short definitions and usage examples. It can thus be seen as a combination and extension of a dictionary and thesaurus. While it is accessible to human users via a web browser, its primary use is in automatic text analysis and artificial intelligence applications. It was first created in the English language and the English WordNet database and software tools have been released under a BSD style license and are freely available for download from that WordNet website. There are now WordNets in more than 200 languages.

Word-sense disambiguation (WSD) is the process of identifying which sense of a word is meant in a sentence or other segment of context. In human language processing and cognition, it is usually subconscious/automatic but can often come to conscious attention when ambiguity impairs clarity of communication, given the pervasive polysemy in natural language. In computational linguistics, it is an open problem that affects other computer-related writing, such as discourse, improving relevance of search engines, anaphora resolution, coherence, and inference.

Automatic summarization is the process of shortening a set of data computationally, to create a subset that represents the most important or relevant information within the original content. Artificial intelligence algorithms are commonly developed and employed to achieve this, specialized for different types of data.

Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of language, concepts or instances, through a numerical description obtained according to the comparison of information supporting their meaning or describing their nature. The term semantic similarity is often confused with semantic relatedness. Semantic relatedness includes any relation between two terms, while semantic similarity only includes "is a" relations. For example, "car" is similar to "bus", but is also related to "road" and "driving".

In linguistics, a word sense is one of the meanings of a word. For example, a dictionary may have over 50 different senses of the word "play", each of these having a different meaning based on the context of the word's usage in a sentence, as follows:

We went to see the playRomeo and Juliet at the theater.

The coach devised a great play that put the visiting team on the defensive.

The children went out to play in the park.

The sequence between semantic related ordered words is classified as a lexical chain. A lexical chain is a sequence of related words in writing, spanning narrow or wide context window. A lexical chain is independent of the grammatical structure of the text and in effect it is a list of words that captures a portion of the cohesive structure of the text. A lexical chain can provide a context for the resolution of an ambiguous term and enable disambiguation of concepts that the term represents.

Distributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called distributional hypothesis: linguistic items with similar distributions have similar meanings.

The Lesk algorithm is a classical algorithm for word sense disambiguation introduced by Michael E. Lesk in 1986.

The knowledge acquisition bottleneck is perhaps the major impediment to solving the word sense disambiguation (WSD) problem. Unsupervised learning methods rely on knowledge about word senses, which is barely formulated in dictionaries and lexical databases. Supervised learning methods depend heavily on the existence of manually annotated examples for every word sense, a requisite that can so far be met only for a handful of words for testing purposes, as it is done in the Senseval exercises.

In computational linguistics, word-sense induction (WSI) or discrimination is an open problem of natural language processing, which concerns the automatic identification of the senses of a word. Given that the output of word-sense induction is a set of senses for the target word, this task is strictly related to that of word-sense disambiguation (WSD), which relies on a predefined sense inventory and aims to solve the ambiguity of words in context.

SemEval is an ongoing series of evaluations of computational semantic analysis systems; it evolved from the Senseval word sense evaluation series. The evaluations are intended to explore the nature of meaning in language. While meaning is intuitive to humans, transferring those intuitions to computational analysis has proved elusive.

<span class="mw-page-title-main">Stemming</span> Process of reducing words to word stems

In linguistic morphology and information retrieval, stemming is the process of reducing inflected words to their word stem, base or root form—generally a written word form. The stem need not be identical to the morphological root of the word; it is usually sufficient that related words map to the same stem, even if this stem is not in itself a valid root. Algorithms for stemming have been studied in computer science since the 1960s. Many search engines treat words with the same stem as synonyms as a kind of query expansion, a process called conflation.

In natural language processing, textual entailment (TE), also known as natural language inference (NLI), is a directional relation between text fragments. The relation holds whenever the truth of one text fragment follows from another text.

Classic monolingual Word Sense Disambiguation evaluation tasks uses WordNet as its sense inventory and is largely based on supervised / semi-supervised classification with the manually sense annotated corpora:

<span class="mw-page-title-main">BabelNet</span> Multilingual semantic network and encyclopedic dictionary

BabelNet is a multilingual lexicalized semantic network and ontology developed at the NLP group of the Sapienza University of Rome. BabelNet was automatically created by linking Wikipedia to the most popular computational lexicon of the English language, WordNet. The integration is done using an automatic mapping and by filling in lexical gaps in resource-poor languages by using statistical machine translation. The result is an encyclopedic dictionary that provides concepts and named entities lexicalized in many languages and connected with large amounts of semantic relations. Additional lexicalizations and definitions are added by linking to free-license wordnets, OmegaWiki, the English Wiktionary, Wikidata, FrameNet, VerbNet and others. Similarly to WordNet, BabelNet groups words in different languages into sets of synonyms, called Babel synsets. For each Babel synset, BabelNet provides short definitions in many languages harvested from both WordNet and Wikipedia.

The following outline is provided as an overview of and topical guide to natural-language processing:

<span class="mw-page-title-main">Word embedding</span> Method in natural language processing

In natural language processing (NLP), a word embedding is a representation of a word. The embedding is used in text analysis. Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that words that are closer in the vector space are expected to be similar in meaning. Word embeddings can be obtained using language modeling and feature learning techniques, where words or phrases from the vocabulary are mapped to vectors of real numbers.

<span class="mw-page-title-main">Word2vec</span> Models used to produce word embeddings

Word2vec is a technique for natural language processing (NLP) published in 2013. The word2vec algorithm uses a neural network model to learn word associations from a large corpus of text. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. As the name implies, word2vec represents each distinct word with a particular list of numbers called a vector. The vectors are chosen carefully such that they capture the semantic and syntactic qualities of words; as such, a simple mathematical function can indicate the level of semantic similarity between the words represented by those vectors.

Paraphrase or paraphrasing in computational linguistics is the natural language processing task of detecting and generating paraphrases. Applications of paraphrasing are varied including information retrieval, question answering, text summarization, and plagiarism detection. Paraphrasing is also useful in the evaluation of machine translation, as well as semantic parsing and generation of new samples to expand existing corpora.

Ani Nenkova is Principal Scientist at Adobe Research, currently on leave from her position as an Associate Professor of Computer and Information Science at the University of Pennsylvania. Her research focuses on computational linguistics and artificial intelligence, with an emphasis on developing computational methods for analysis of text quality and style, discourse, affect recognition, and summarization.

References

  1. Barazza, Leonardo (3 April 2017). "How does Word2Vec's Skip-Gram work?". Becoming Human.
  2. Melamud, Oren; Levy, Omer; Dagan, Ido (5 June 2015). "A Simple Word Embedding Model for Lexical Substitution". Proceedings of NAACL-HLT 201: 1–7. doi: 10.3115/v1/W15-1501 . S2CID   2897037 . Retrieved 16 April 2018.