Li's criterion

Last updated

In number theory, Li's criterion is a particular statement about the positivity of a certain sequence that is equivalent to the Riemann hypothesis. The criterion is named after Xian-Jin Li, who presented it in 1997. In 1999, Enrico Bombieri and Jeffrey C. Lagarias provided a generalization, showing that Li's positivity condition applies to any collection of points that lie on the Re(s) = 1/2 axis.

Contents

Definition

The Riemann ξ function is given by

where ζ is the Riemann zeta function. Consider the sequence

Li's criterion is then the statement that

the Riemann hypothesis is equivalent to the statement that for every positive integer .

The numbers (sometimes defined with a slightly different normalization) are called Keiper-Li coefficients or Li coefficients. They may also be expressed in terms of the non-trivial zeros of the Riemann zeta function:

where the sum extends over ρ, the non-trivial zeros of the zeta function. This conditionally convergent sum should be understood in the sense that is usually used in number theory, namely, that

(Re(s) and Im(s) denote the real and imaginary parts of s, respectively.)

The positivity of has been verified up to by direct computation.

Proof

Note that .

Then, starting with an entire function , let .

vanishes when . Hence, is holomorphic on the unit disk iff .

Write the Taylor series . Since

we have

so that

.

Finally, if each zero comes paired with its complex conjugate , then we may combine terms to get

The condition then becomes equivalent to . The right-hand side of ( 1 ) is obviously nonnegative when both and . Conversely, ordering the by , we see that the largest term () dominates the sum as , and hence becomes negative sometimes. P. Freitas (2008). "a Li–type criterion for zero–free half-planes of Riemann's zeta function". arXiv: math.MG/0507368 .

Generalizations

Bombieri and Lagarias demonstrate that a similar criterion holds for any collection of complex numbers, and is thus not restricted to the Riemann hypothesis. More precisely, let R = {ρ} be any collection of complex numbers ρ, not containing ρ = 1, which satisfies

Then one may make several equivalent statements about such a set. One such statement is the following:

One has for every ρ if and only if
for all positive integers n.

One may make a more interesting statement, if the set R obeys a certain functional equation under the replacement s  1  s. Namely, if, whenever ρ is in R, then both the complex conjugate and are in R, then Li's criterion can be stated as:

One has Re(ρ) = 1/2 for everyρif and only if
for all positive integers n.

Bombieri and Lagarias also show that Li's criterion follows from Weil's criterion for the Riemann hypothesis.

In 2006, P. Freitas proved that all of the zeros of the Riemann zeta function lie inside the region , where if and only if the numbers

are non-negative for all positive integers . These coefficients are called the -Li coefficients. [1] A. Droll [2] generalized the results to the extended Selberg class, A. Bucur, A.-M. Ernvall-Hytönen, A. Odžak and L. Smajlović [3] investigated the behavior of the coefficients for certain functions violating the Riemann hypothesis, and N. Palojärvi [4] proved explicit conditions between finitely many -Li coefficients and zero-free regions.

Related Research Articles

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, the ratio test is a test for the convergence of a series

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887. The Lerch transcendent, is given by:

<span class="mw-page-title-main">Riesz function</span> Mathematical function

In mathematics, the Riesz function is an entire function defined by Marcel Riesz in connection with the Riemann hypothesis, by means of the power series

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).

<span class="mw-page-title-main">Riemann xi function</span>

In mathematics, the Riemann xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann.

<span class="mw-page-title-main">Chebyshev function</span> Mathematical function

In mathematics, the Chebyshev function is either a scalarising function (Tchebycheff function) or one of two related functions. The first Chebyshev functionϑ  (x) or θ (x) is given by

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.

<span class="mw-page-title-main">Grunsky matrix</span> Matrix used in complex analysis

In complex analysis and geometric function theory, the Grunsky matrices, or Grunsky operators, are infinite matrices introduced in 1939 by Helmut Grunsky. The matrices correspond to either a single holomorphic function on the unit disk or a pair of holomorphic functions on the unit disk and its complement. The Grunsky inequalities express boundedness properties of these matrices, which in general are contraction operators or in important special cases unitary operators. As Grunsky showed, these inequalities hold if and only if the holomorphic function is univalent. The inequalities are equivalent to the inequalities of Goluzin, discovered in 1947. Roughly speaking, the Grunsky inequalities give information on the coefficients of the logarithm of a univalent function; later generalizations by Milin, starting from the Lebedev–Milin inequality, succeeded in exponentiating the inequalities to obtain inequalities for the coefficients of the univalent function itself. The Grunsky matrix and its associated inequalities were originally formulated in a more general setting of univalent functions between a region bounded by finitely many sufficiently smooth Jordan curves and its complement: the results of Grunsky, Goluzin and Milin generalize to that case.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

References

  1. Freitas, Pedro (2006). "A Li-type criterion for zero-free half planes of Riemann's zeta function". J. London. Math. Soc. 73 (2): 399–414.
  2. Droll, Andrew (2012). Variations of Li’s criterion for an extension of the Selberg class.
  3. Bucur, Alina; Ernvall-Hytönen, Anne-Maria; Odžak, Almasa; Smajlović, Lejla (2016). "On a Li-type criterion for zero-free regions of certain Dirichlet series with real coefficients". LMS J. Comput. Math. 19 (1): 259–280.
  4. Palojärvi, Neea (2020). "Explicit Zero-Free Regions and a τ -Li-type Criterion". Albanian J. Math. 14 (1): 47–77.