Lighthill's eighth power law

Last updated

In aeroacoustics, Lighthill's eighth power law states that power of the sound created by a turbulent motion, far from the turbulence, is proportional to eighth power of the characteristic turbulent velocity, derived by Sir James Lighthill in 1952. [1] [2] This is used to calculate the total acoustic power of the jet noise. The law reads as

where

The eighth power is experimentally verified and found to be accurate for low speed flows, i.e., Mach number is small, . And also, the source has to be compact to apply this law.

Related Research Articles

Magnetoresistance is the tendency of a material to change the value of its electrical resistance in an externally-applied magnetic field. There are a variety of effects that can be called magnetoresistance. Some occur in bulk non-magnetic metals and semiconductors, such as geometrical magnetoresistance, Shubnikov–de Haas oscillations, or the common positive magnetoresistance in metals. Other effects occur in magnetic metals, such as negative magnetoresistance in ferromagnets or anisotropic magnetoresistance (AMR). Finally, in multicomponent or multilayer systems, giant magnetoresistance (GMR), tunnel magnetoresistance (TMR), colossal magnetoresistance (CMR), and extraordinary magnetoresistance (EMR) can be observed.

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

Gravity wave Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

Drag coefficient Dimensionless parameter to quantify fluid resistance

In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.

In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant.

Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area. The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity.

In fluid dynamics, drag is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers or a fluid and a solid surface. Unlike other resistive forces, such as dry friction, which are nearly independent of velocity, drag force depends on velocity.

Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.

Stokes number Dimensionless number characterising the behavior of particles suspended in a fluid flow

The Stokes number (Stk), named after George Gabriel Stokes, is a dimensionless number characterising the behavior of particles suspended in a fluid flow. The Stokes number is defined as the ratio of the characteristic time of a particle to a characteristic time of the flow or of an obstacle, or

Premixed flame

A premixed flame is a flame formed under certain conditions during the combustion of a premixed charge of fuel and oxidiser. Since the fuel and oxidiser—the key chemical reactants of combustion—are available throughout a homogeneous stoichiometric premixed charge, the combustion process once initiated sustains itself by way of its own heat release. The majority of the chemical transformation in such a combustion process occurs primarily in a thin interfacial region which separates the unburned and the burned gases. The premixed flame interface propagates through the mixture until the entire charge is depleted. The propagation speed of a premixed flame is known as the flame speed which depends on the convection-diffusion-reaction balance within the flame, i.e. on its inner chemical structure. The premixed flame is characterised as laminar or turbulent depending on the velocity distribution in the unburned pre-mixture.

Computational aeroacoustics is a branch of aeroacoustics that aims to analyze the generation of noise by turbulent flows through numerical methods.

In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow. Physically, the turbulence kinetic energy is characterised by measured root-mean-square (RMS) velocity fluctuations. In Reynolds-averaged Navier Stokes equations, the turbulence kinetic energy can be calculated based on the closure method, i.e. a turbulence model.

Acoustic waves are a type of energy propagation through a medium by means of adiabatic compression and decompression. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, ground movement from an earthquake, or ultrasound used for medical imaging.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. It is the less-known opposite of sound generation by a flow.

In acoustics, Lighthill mechanism refers to the generation of sound by turbulent fluid motions, as proposed by Sir James Lighthill in 1952.

Reynolds number Dimensionless quantity used to help predict fluid flow patterns

The Reynolds number helps predict flow patterns in different fluid flow situations. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. Reynolds numbers are an important dimensionless quantity in fluid mechanics.

Mathisson–Papapetrou–Dixon equations

In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.

Transmission loss (TL) in duct acoustics, together with insertion loss (IL), describes the acoustic performances of a muffler-like system. It is frequently used in the industry areas such as muffler manufacturers and NVH department of automobile manufacturers. Generally the higher transmission loss of a system it has, the better it will perform in terms of noise cancellation.

A whistle is a device that makes sound from blowing air. The physical theory of the sound-making process is an example of the application of the science of fluid dynamics. Knowledge of the geometry, dimensions and fluid properties can allow prediction of the properties of the whistle. The principles relevant to whistle operation also have applications in other areas such as fluid flow measurement.

In arithmetic and algebra the eighth power of a number n is the result of multiplying eight instances of n together. So:

References

  1. Lighthill, M. J. (1952, March). On sound generated aerodynamically I. General theory. In Proc. R. Soc. Lond. A (Vol. 211, No. 1107, pp. 564–587). The Royal Society.
  2. Lighthill, M. J. (1954, February). On sound generated aerodynamically. II. Turbulence as a source of sound. In Proc. R. Soc. Lond. A (Vol. 222, No. 1148, pp. 1–32).