In the philosophy of mathematics, specifically the philosophical foundations of set theory, limitation of size is a concept developed by Philip Jourdain and/or Georg Cantor to avoid Cantor's paradox. It identifies certain "inconsistent multiplicities", in Cantor's terminology, that cannot be sets because they are "too large". In modern terminology these are called proper classes.
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics, and purports to provide a viewpoint of the nature and methodology of mathematics, and to understand the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts.
Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used to define nearly all mathematical objects.
Philip Edward Bertrand Jourdain was a British logician and follower of Bertrand Russell.
The axiom of limitation of size is an axiom in some versions of von Neumann–Bernays–Gödel set theory or Morse–Kelley set theory. This axiom says that any class which is not "too large" is a set, and a set cannot be "too large". "Too large" is defined as being large enough that the class of all sets can be mapped one-to-one into it.
In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. This axiom formalizes the limitation of size principle, which avoids the paradoxes by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V — that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.
In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.
Naïve set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naïve set theory is defined informally, in natural language. It describes the aspects of mathematical sets familiar in discrete mathematics, and suffices for the everyday use of set theory concepts in contemporary mathematics.
In mathematics, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:
There is no set whose cardinality is strictly between that of the integers and the real numbers.
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers describe the sizes of infinite sets.
Georg Ferdinand Ludwig Philipp Cantor was a German mathematician. He created set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between the members of two sets, defined infinite and well-ordered sets, and proved that the real numbers are more numerous than the natural numbers. In fact, Cantor's method of proof of this theorem implies the existence of an "infinity of infinities". He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact he was well aware of.
Mathematical logic is a subfield of mathematics exploring the applications of formal logic to mathematics. It bears close connections to metamathematics, the foundations of mathematics, and theoretical computer science. The unifying themes in mathematical logic include the study of the expressive power of formal systems and the deductive power of formal proof systems.
In mathematics, an uncountable set is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.
Transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. The term transfinite was coined by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as "infinite". However, the term "transfinite" also remains in use.
Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text and original numbering.
In mathematics, two sets or classes A and B are equinumerous if there exists a one-to-one correspondence between them, i.e. if there exists a function from A to B such that for every element y of B there is exactly one element x of A with f(x) = y. Equinumerous sets are said to have the same cardinality. The study of cardinality is often called equinumerosity (equalness-of-number). The terms equipollence (equalness-of-strength) and equipotence (equalness-of-power) are sometimes used instead.
In set theory, the concept of cardinality is significantly developable without recourse to actually defining cardinal numbers as objects in the theory itself. The concepts are developed by defining equinumerosity in terms of functions and the concepts of one-to-one and onto ; this gives us a pseudo-ordering relation
In mathematical logic, the theory of infinite sets was first developed by Georg Cantor. Although this work has become a thoroughly standard fixture of classical set theory, it has been criticized in several areas by mathematicians and philosophers.
In set theory, Cantor's paradox is a statement derivable from the theorem that there is no greatest cardinal number, so that the collection of "infinite sizes" is itself infinite. The difficulty is handled in axiomatic set theory by declaring that this collection is not a set but a proper class; in von Neumann–Bernays–Gödel set theory it follows from this and the axiom of limitation of size that this proper class must be in bijection with the class of all sets. Thus, not only are there infinitely many infinities, but this infinity is larger than any of the infinities it enumerates.
In mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an element from every non-empty set.
This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory.
In set theory, an ordinal number, or ordinal, is one generalization of the concept of a natural number that is used to describe a way to arrange a collection of objects in order, one after another. Any finite collection of objects can be put in order just by the process of counting: labeling the objects with distinct natural numbers. Ordinal numbers are thus the "labels" needed to arrange collections of objects in order.
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.
This logic-related article is a stub. You can help Wikipedia by expanding it. |
This set theory-related article is a stub. You can help Wikipedia by expanding it. |