Linda-like systems

Last updated

Linda-like systems are parallel and distributed programming models that use unstructured collections of tuples as a communication mechanism between different processes.

In computing, a parallel programming model is an abstraction of parallel computer architecture, with which it is convenient to express algorithms and their composition in programs. The value of a programming model can be judged on its generality: how well a range of different problems can be expressed for a variety of different architectures, and its performance: how efficiently the compiled programs can execute. The implementation of a parallel programming model can take the form of a library invoked from a sequential language, as an extension to an existing language, or as an entirely new language.

Distributed computing is a field of computer science that studies distributed systems. A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. The components interact with one another in order to achieve a common goal. Three significant characteristics of distributed systems are: concurrency of components, lack of a global clock, and independent failure of components. Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications.

Unstructured data is information that either does not have a pre-defined data model or is not organized in a pre-defined manner. Unstructured information is typically text-heavy, but may contain data such as dates, numbers, and facts as well. This results in irregularities and ambiguities that make it difficult to understand using traditional programs as compared to data stored in fielded form in databases or annotated in documents.

Examples

In addition to proper Linda implementations, these include other systems such as the following:

In computer science, Linda is a model of coordination and communication among several parallel processes operating upon objects stored in and retrieved from shared, virtual, associative memory. It was developed by Sudhir Ahuja at AT&T Bell Laboratories in collaboration with David Gelernter and Nicholas Carriero at Yale University in 1986.

Intel American semiconductor company

Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California, in the Silicon Valley. It is the world's second largest and second highest valued semiconductor chip manufacturer based on revenue after being overtaken by Samsung, and is the inventor of the x86 series of microprocessors, the processors found in most personal computers (PCs). Intel ranked No. 46 in the 2018 Fortune 500 list of the largest United States corporations by total revenue.

Concurrent Collections is a programming model for software frameworks to expose parallelism in applications. The Concurrent Collections conception originated from tagged stream processing development with HP TStreams.

Related Research Articles

Intel 80286

The Intel 80286 is a 16-bit microprocessor that was introduced on February 1, 1982. It was the first 8086-based CPU with separate, non-multiplexed address and data buses and also the first with memory management and wide protection abilities. The 80286 used approximately 134,000 transistors in its original nMOS (HMOS) incarnation and, just like the contemporary 80186, it could correctly execute most software written for the earlier Intel 8086 and 8088 processors.

A relational database is a digital database based on the relational model of data, as proposed by E. F. Codd in 1970. A software system used to maintain relational databases is a relational database management system (RDBMS). Virtually all relational database systems use SQL for querying and maintaining the database.

Relational model database model

The relational model (RM) for database management is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.

Concurrency (computer science)

In computer science, concurrency refers to the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the final outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability property of a program, algorithm, or problem into order-independent or partially-ordered components or units.

Alef is a discontinued concurrent programming language, designed as part of the Plan 9 operating system by Phil Winterbottom of Bell Labs. It implemented the channel-based concurrency model of Newsqueak in a compiled, C-like language.

A tuple space is an implementation of the associative memory paradigm for parallel/distributed computing. It provides a repository of tuples that can be accessed concurrently. As an illustrative example, consider that there are a group of processors that produce pieces of data and a group of processors that use the data. Producers post their data as tuples in the space, and the consumers then retrieve data from the space that match a certain pattern. This is also known as the blackboard metaphor. Tuple space may be thought as a form of distributed shared memory.

Concurrent computing is a form of computing in which several computations are executed during overlapping time periods—concurrently—instead of sequentially. This is a property of a system—this may be an individual program, a computer, or a network—and there is a separate execution point or "thread of control" for each computation ("process"). A concurrent system is one where a computation can advance without waiting for all other computations to complete.

Intel iPSC

The Intel Personal SuperComputer was a product line of parallel computers in the 1980s and 1990s. The iPSC/1 was superseded by the Intel iPSC/2, and then the Intel iPSC/860.

Task parallelism is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data. A common type of task parallelism is pipelining which consists of moving a single set of data through a series of separate tasks where each task can execute independently of the others.

Threading Building Blocks (TBB) is a C++ template library developed by Intel for parallel programming on multi-core processors. Using TBB, a computation is broken down into tasks that can run in parallel. The library manages and schedules threads to execute these tasks.

In computer programming, feature-oriented programming (FOP) or feature-oriented software development (FOSD) is a programming paradigm for program generation in software product lines (SPLs) and for incremental development of programs.

Intel Parallel Studio XE is a software development product developed by Intel that facilitates native code development on Windows, macOS and Linux in C++ and Fortran for parallel computing. Parallel programming enables software programs to take advantage of multi-core processors from Intel and other processor vendors.

Intel Array Building Blocks was a C++ library developed by Intel Corporation for exploiting data parallel portions of programs to take advantage of multi-core processors, graphics processing units and Intel Many Integrated Core Architecture processors. ArBB provides a generalized vector parallel programming solution designed to avoid direct dependencies on particular low-level parallelism mechanisms or hardware architectures. ArBB is oriented to applications that require data-intensive mathematical computations. By default, ArBB programs cannot create data races or deadlocks.

Intel Parallel Building Blocks (PBB) was a collection of three programming solutions designed for multithreaded parallel computing. PBB consisted of Cilk Plus, Threading Building Blocks (TBB) and Intel Array Building Blocks (ArBB).

InfinityDB is an all-Java embedded database engine and client/server DBMS with an extended java.util.concurrent.ConcurrentNavigableMap interface that is deployed in handheld devices, on servers, on workstations, and in distributed settings. The design is based on a proprietary lockless, concurrent, B-tree architecture that enables client programmers to reach high levels of performance without risk of failures.

References