In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD). The success of this method is mainly due to its adaptability and to the increasing interest for the low temperature deposition processes. Correlatively, the increasing demand of various thin film materials for new industrial applications is also a significant reason for the rapid development of MOCVD. Certainly, a wide variety of materials which could not be deposited by the conventional halide CVD process, because halide reactive do not exist or are not volatile, can now be grown by MOCVD. This includes metals and different multi-component materials such as semiconductor and intermetallic compounds as well as carbides, nitrides, oxides, borides, silicides and chalcogenides. Further significant advantages of MOCVD over physical processes are a capability for large scale production, an easier automation, a good conformal coverage, the selectivity and the ability to produce metastable materials. [1]
Thus, much effort has been aimed at the synthesis of new molecular precursors. A productive overview is provided by several exceptional reviews covering fields of MOCVD such as, for instance, epitaxial growth of semiconductor compounds, [2] [3] [4] and low temperature deposition of metals. [5] [6] An overview of metal-organic compounds used for the MOCVD growth of different kind of materials is reported in the following reviews. [7] [8] [9] This is a list of prominent precursor complexes synthesized thus far with suited properties to be utilized for MOCVD processes.
Precursor, name, formula | CAS No. | Chemical stability | Themal stability | Evaporation T (pressure) | Vapour pressure (oC/Torr) | Decomposition T | Oligommerization | Crystal structure | Melting point | TG data | DSC | IR spectra | NMR data | Solubility | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li(TMHD), Lithium tetramethylheptanedionate, C11H19LiO2 | 22441-13-0 | Decomposes at low pressure and room temperatures, [1] stable under N2 or Ar in sealed contanier and decomposes slowly in contact with moist air and rapidly in contact with water. | Above 215 °C under high vacuum it decomposes to form ketenes and carbanions [1] | 268-270 °C (atmospehric pressure) | NA | 265-268 °C | Soluble in water | [1] D. Saulys, V. Joshkin, M. Khoudiakov, T.F. Kuech, A.B. Ellis, S.R. Oktyabrsky, L. McCaughan, Journal of Crystal Growth 217 (2000) 287-301 | |||||||
Lithium bis(trimethylsilyl)amide, LiN(SiMe3)2 | 4039- | Reacts violently with water. | 70-72 °C | J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012). | |||||||||||
Lithium bis(ethyldimethylsilyl)amide, [Li(NSiMe2Et)2]2 | 300585-49-3 | 122/0.2 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | ||||||||||||
Lithium tert-amyl(i-propyldimethylsilyl)amide | 137/0.2 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium bis(3,3-dimethylbutyldimethylsilyl)amide | 225/0.9 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium tert-amyl(i-butyldimethylsilyl)amide | 145/0.1 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium tert-amyl(n-propyldimethylsilyl)amide | 171/0.3 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium bis(n-propyldimethylsilyl)amide | 130/0.15 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium bis(i-butyldimethylsilyl)amide | 145/0.05 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium tert-amyl(triethylsilyl)amide | 157/0.095 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium bis(n-butyldimethylsilyl)amide | 145/0.085 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Lithium dimethylamide, (CH3)2NLi | 3585-33-9 | Catches fire spontaneously if exposed to air and in contact with water releases flammable gas. | https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-dimethylamide | ||||||||||||
Dicyclohexylamidolithium, C12H24Li2N | 4111-55-1 | High sublimation temperature of 250 °C at which it is also partly thermally decomposing. | 250 °C | Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., & Fjellvåg, H., Journal of Materials Chemistry, 2009, 19(46), 8767 | |||||||||||
Li(acac), Lithium acetylacetonate, C5H7LiO2 | 18115-70-3 | Hygroscopic | Aerosol [1] | 250 °C | Methanol | [1] V. Bornand, Ph. Papet, E. Philippot, Thin Solid Films 1997, 304, 239. | |||||||||
Lithium ethoxide, LiC2H5O | 2388-07-0 | Self heating and reacts violently with water. | Decomposes at 325 °C. LiOEt is insoluble in hydrocarbons, soluble in EtOH (125g/L), α = 6, 4 (MS), ΔHform = -108.6 | Powder subliming at 100 °C/vacuo, 150 °C /10-2 torr. | https://www.sigmaaldrich.com/catalog/product/aldrich/400203?lang=en | ||||||||||
Lithium isopropoxide C3H7LiO | 2388-10-5 | "Sensitive to moisture and reacts with water. Material decomposes slowly in contact with moist air and rapidly in contact with water, possibly igniting. Avoid contact with moist air, water, acids, alcohols, ketones, esters, carbon dioxide, halogens." | Highly flammable, stable under nitrogen or argon in sealed containers | https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-isopropoxide#section=Chemical-and-Physical-Properties | |||||||||||
[Li(OtBu)]6, Lithium tert-butoxide, C4H9LiO | 1907-33-1 | Stable to light, heat, air, carbon dioxide and strong acids. Moisture sentitive, vigorous reaction to water. | 108-115 °C [1,2] | 283 °C | Soluble in toluene, hexane, tetrahydrofuran and methyl tert-butyl ether. | " [1] A. Dabirian, Y. Kuzminykh, S. C. Sandu, S. Harada, E. Wagner, P. Brodard, G. Benvenuti, S.Rushworth, P. Muralt, P. Hoffmann, Cryst. Growth Des. 2011, 1, 203. [2] A. Tanaka, K. Miyashita, T. Tashiro, M. Kimura, T. Sukegawa, J. Cryst. Growth 1995, 148, 324. [3] J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012). [4] Sigma-Aldtritch" | |||||||||
LiTa(OEt)6 | 127503-04-2 | The double alkoxides have sufficient stability using parent alcohol as solvent. Decomposes in contact with water. | The thermal stability and volatility vary with respect to the reaction in solid or liquid state. | 230/0.2 | https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2739827.htm | ||||||||||
lithium hexa-iso-propoxytantalate LiTa(i-OPr)6 | 160-180/0.1 | https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html | |||||||||||||
LiTa(t-OBut)6 | 110-120/0.1 | https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html | |||||||||||||
Lithium niobium ethoxide, LiNb(OC2H5)6 | Moisture Sensitive | Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi : 10.4028/www.scientific.net/ast.63.7 | |||||||||||||
LiNb(i-OPr)6 | <140/0.2 | https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html | |||||||||||||
LiNb(t-OBut)6 | 110-120/0.1 | https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html | |||||||||||||
Sodium niobium ethoxide, NaNb(OC2H5)6 | Moisture Sensitive | Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi : 10.4028/www.scientific.net/ast.63.7 | |||||||||||||
Sodium cyclopentadienide, C5H5Na | 4984-82-1 | In contact with water releases flammable gases which may ignite spontaneously. | Soluble in THF, benzene or liq. NH3 | "1. (a) Fischer, E. O.; Jira, R.; Hafner, K. Z. Naturforsch. 1953, 8b,(b) Fischer, E. O.; Hafner, W.; Stahl, H. O. Z. Anorg. Allg. Chem.1955, 282, 47. 2. Fehlhammer, W. P.; Herrmann, W. A.; O¨ fele, K. In Synthetic Methods of Organometallic and Inorganic Chemistry; Herrmann, W.A., Brauer, G., Eds.; Thieme: Stuttgart, 1997; Vol. 3, p 50. 3.https://spectrabase.com/spectrum/IMGzWBmNgJE. 4.https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-cyclopentadienide#section=GHS-Classification" | |||||||||||
Sodium hexafluoroacetylacetonate, NaC5HF6O2 | 22466-49-5 | 25/10.3 | 230 °C | Soluble in water and warm methoxypropanol. | 1. Zh. Neorg. Khim. 41, 411, (1996). 2. Rec. Trav. Chim. 114, 242, (1995) | ||||||||||
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd) | 22466-43-9 | Sublimes between 170 and 255 °C | M. Tiitta, M. Leskäla, E. Nykänen, P. Soinen, L. Niinstö, Thermochim. acta, 1995, 256 (1), 47-53 | ||||||||||||
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, Na(thd)(phen) | Sublimes around 210 °C | D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638 | |||||||||||||
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate 2,2'-bipiridyne, Na(thd)(bipy) | It decomposes at 2 stages namely around 90 °C and 140 °C | D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638 | |||||||||||||
Sodium-niobium hexakis(isopropoxide), NaNb(OiPr)6 | 110-120/0.1 | ||||||||||||||
Sodium bis(n-propyldimethylsilyl)amide | 213/0.3 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Sodium bis(i-butyldimethylsilyl)amide | 189/0.08 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Sodium bis(n-butyldimethylsilyl)amide | 231/0.5 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Sodium bis(n-hexyldimethylsill)amide | 265/0.3 | Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606 | |||||||||||||
Sodium Tert Butoxide, NaOC(CH3)3 | 865-48-5 | Stable at room temperature. Decomposes at 300 °C; stable under N2 or Ar in sealed container and decomposes slowly in contact with moist air and violently in contact with water. [1] | At 300 °C [1] | sublimation: 254 °C [2] (atmospheric pressure) | Information not available | Information not available | 263 °C [3] | "• 30 g/L at 20 °C Medium: tert-butyl alcohol • 70 g/L at 20 °C Medium: Toluene • 130 g/L at 20 °C Medium: Hexane • 380 g/L at 20 °C Medium: Tetrahydrofuran • 50 g/L at 20 °C Medium: xylene • 110 g/L at 20 °C Medium: octane • 220 g/L at 20 °C Medium: Diethyl ether • 450 g/L at 20 °C Medium: Dimethylformamide | ": [1] https://www.nwmissouri.edu/naturalsciences/sds/s/Sodium%20tert-butoxide.pdf: [2] https://www.albemarle.com/storage/components/T401225.PDF: [3] Simone Manzini, Núria Huguet, Oliver Trapp, Rocco A. Paciello, Thomas Schaub; "Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases" Catalysis Today, Volume 281, Part 2, 2017, Pages 379–386, ISSN 0920-5861 | ||||||
Potassium-niobium hexakis(ethoxide), KNb(OEt)6 | 200/0.8 | Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi : 10.4028/www.scientific.net/ast.63.7 | |||||||||||||
Potassium tert-butoxide (KOtBu) C4H9KO | 865-47-4 | Sublimes at temperature of 220 °C at pressure of 1 Torr [1] | NA | 220/1 | 256 °C-258 °C [2] | Soluble in hexane, toluene, diethyl ether and tetrahydrofuran. | [1] Feuer et al.Journal of the American Chemical Society1956vol. 78p. 4364,4367 [2] https://www.sigmaaldrich.com/catalog/product/aldrich/156671?lang=de®ion=DE [3] Labbow, R., Michalik, D., Reiß, F., Schulz, A. and Villinger, A., 2016. Isolation of Labile Pseudohalogen NSO Species. Angewandte Chemie International Edition, 55(27), pp. 7680–7684. | ||||||||
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2 | 22441-14-1 | Hygroscopic | 195 °C | 1. Onoe, A., Tasaki, Y., & Chikuma, K. (2005). Anomalous evaporation characteristics of vitrificated K(DPM) and stable gas supply using disk-shaped K(DPM) precursors for metalorganic chemical vapor deposition. Journal of Crystal Growth, 277(1-4), 546–554. doi : 10.1016/j.jcrysgro.2005.01.077 2. www.molbase.com | |||||||||||
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, K(thd)(phen) | 320-330 °C | Oligomerizes with n up to 7 | D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638 | ||||||||||||
Bi(phenyl)3,Triphenylbismuth(III), (C6H5)3Bi | 603-33-8 | No specific storage condition | 76-80 °C | [1] Sigma | |||||||||||
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3 | 14876-47-2 | 164 °C (Atm) (STREM); 179-185 °C (lit.) (Sigma) | [1] Sigma [2] Strem | ||||||||||||
Ni(hfa)2tmeda | Evaporation occurs in the 120–200 _C temperature range, with about 2%residue at 350 _C (Atm under N2)" | 120–200 °C (Atm pressure under N2) | 106,7°C | [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823 | |||||||||||
Ni(tta)2tmeda | evaporated quantitatively in the 200–330 _C range, with less than 2% residue le at 350_°C. (Atm under N2) | 2774(2) A˚ 3, Z = 4, Dc = 1.478 g cm−3 | 147–149°C | to request | to request | [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823 | |||||||||
Ni(tmhd)2,Nickel(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionate), Ni(OCC(CH3)3CHCOC(CH3)3)2 | 14481-08-4 | 219-223°C (Atm) | Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823 [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b. | ||||||||||||
Ni(acac)2, Nickel(II) acetylacetonate, Ni(C5H7O2)2 | 3264-82-2 | 230 - 240°C | ethers and aromatic and halogenated hydrocarbons | [1] SIGMA [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b. [6] A. Pande, Synlett, 2005, 6, 1042–1043 | |||||||||||
La(hfa)3diglyme | nonhygroscopic, can be handled in air | "TGA, 10 ""Clmin under N2) reveal that the sublimation processes takes place in the 115-295°C (residue = 2% to 300°C)" | 74-76 °C | Ethanol, chloroform, acetone, pentane, toluene and slightly soluble in cyclohexane | [7] Graziella Malandrino, Rosalia Licata, Francesco Castelli, Ignazio L. Fragala, and Cristiano Benelli Inorganic Chemistry 1995 34 (25), 6233-6234" | ||||||||||
Nb(THD)4, Niobium tetrakis(2,2,6,6-tetramethylheptane-3,5-dionate), C44H76NbO8 | 41706-15-4 | Air and moisture stable, insoluble in water. | Under atmospheric pressure and inert atmosphere Li(thd) evaporates completely before ≈270 °C without decomposition. Heating of Nb(thd)4 under similar conditions results in a solid residue of ≈7% what shows that evaporation and decomposition of this compound goes simultaneously (full decomposition of Nb(thd)4 to Nb2O5 should leave 16.1% residue). [1] | 219-220 °C | 1,2-dimethoxyethane | [1] S. Margueron, A. Bartasyte, V. Plausinaitiene, A. Abrutis, P. Boulet, V. Kubilius, Z. Saltyte, Proc. SPIE 2013, 8626, 862612. | |||||||||
Nb(thd)2Cl3, Bis-dipivaloylmethanate niobium N-chloride, C4H10Cl3NbO2 | 110615-13-9 | Air sensitive. Hydrolyses readily. | 170 °C [1] | 230 °C | [1] S. Jung, N. Imaish, Korean, J. Chem. Eng. 1999, 16, 229. [2] Sigma-Aldritch | ||||||||||
Niobium pentakis(methoxide), Nb(OMe)5 | Low volatility | 200 °C [1] | [1] B. J. Curtis, H. R. Brunner, Mater. Res. Bull. 1975, 10, 515. | ||||||||||||
Nb(OEt)5 , Niobium pentaethoxide, C10H25NbO5 | 3236-82-6 | Air and moisture sensitive. Incompatible with strong acids and strong oxidizing agents. | 135-145 °C [1] 100-120 °C [2] | 5-6 °C | Dry touluene, ethanol. | [1] Y. Sakashita, H. Segawa, J. Appl. Phys. 1995, 77, 5995 [2] Y. Akiyama, K. Shitanaka, H. Murakami, Y. S. Shin, M. Yoshida, N. Imaishi, Thin Solid Films 2007, 515, 4975. [3] Sigma-Aldritch | |||||||||
Niobium ethoxide, Nb(OCH2CH3)5 | 3236-82-6 | Stable at room temperature. Stable under N2 or Ar in sealed container and decomposes quickly in contact with moist air. Reacts with water. [1] | At 325-350 °C [2] | Information not available | 21.5 kPa at 500 K [3] | At 325-350 °C [2] | Dimer | At 5 °C [4] | Soluble in organic solvents. Decomposes in water.Miscible with organic solvents [4] | : [1] https://www.gelest.com/wp-content/uploads/product_msds/AKN590-msds.pdf: [2] Rahtu, Antti (2002). Atomic Layer Deposition of High Permittivity Oxides: Film Growth and In Situ Studies (Thesis). University of Helsinki. ISBN 952-10-0646-3: [3] Niobium(V) ethoxide: [4] Cai Ya-nan, Yang Sheng-hai, Jin Sheng-ming, Yang Hai-ping, Hou Guo-feng, Xia Jiao-yun,"Electrochemical synthesis, characterization and thermal properties of niobium ethoxide"; J. Cent. South Univ. Technol. (2011) 18: 73−77: [5] https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3759592.htm | |||||
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5 | 19824-59-0 | Reacts violently with water | 100oC | https://www.sigmaaldrich.com/catalog/product/aldrich/496863?lang=en | |||||||||||
Tantalum(V) ethoxide, Ta(OC2H5)5 | 6074-84-6 | 21oC | https://www.sigmaaldrich.com/catalog/product/aldrich/760404?lang=en | ||||||||||||
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3 | 169896-41-7 | Reacts violently with water | https://www.sigmaaldrich.com/catalog/product/aldrich/521280?lang=en | ||||||||||||
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta | 511292-99-2 | Reacts violently with water | https://www.sigmaaldrich.com/catalog/product/aldrich/j100043?lang=en | ||||||||||||
Cesium-yttrium tetrakis (1,1,1-trifluoro -5,5-dimethylhexane-2,4-dionate) C32H40O8F12CsY | Vikulova, E. S., Zherikova, K. V., Zelenina, L. N., Trubin, S. V., Sysoev, S. V., Semyannikov, Asanov I. V., Morozova N. B., Igumenov, I. K., J. Chem. Thermodynamics 69 (2014) 137–144 | ||||||||||||||
Cesium-yttrium tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate) | sublimes at 230 °C | A.A. Vorobjev, Course Thesis, http://www.bibliofond.ru/view.aspx?id=555884 | |||||||||||||
Cesium-yttrium tetrakis (hexafluoracetylacetonate) CS[Y(CF3COCHCOCF3)4] | M. J. Bennett, F. A. Cotton, P. Legzdins, S. J. Lippard, Inorg. Chem., 1968, 7 (9), pp 1770–1776, | ||||||||||||||
Cesium-lantanum tetrakis (hexafluoracetylacetonate) | C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944 | ||||||||||||||
Cesium-europium tetrakis (hexafluoracetylacetonate) | [i] C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944 [ii] J. H. Burns, M. D. Danford, Inorg. Chem., 1969, 8 (8), pp 1780–1784, doi : 10.1021/ic50078a048, | ||||||||||||||
Rubidium acetylacetonate RbC5H7O2 | 66169-93-5 | melting point: 200 °C | C.R. Bhattacharjee, M. Bhattacharjee; M.K. Chaudhuri, H. Sangchungnunga, J. Chem. Res. Synopses, 1991, no9, pp. 250–251 | ||||||||||||
Rubidium 2,2,6,6-tetramethylheptane-3,5-dionate C11H19O2Rb | 166439-15-2 | Rb(thd) was found to be completely insoluble in supercritical CO2 (0 mol/L) under these conditions: 100-200bar/ 60 °C | O. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber, E. Dinjus, J. Supercritical Fluids, 2007, Vol.41, Iss.2, p. 179–186 | ||||||||||||
Rubidium trimethysilyloxide | sublimes at 80 °C/ 10-6 Torr and decomposes at 140 °C | ||||||||||||||
Rubidium isopropoxide Rb(OiPr) | sublimes under deep vacuum (10-6 Torr) despite its polymeric nature, surprisingly it sublimes at higher temperature (200 °C) | ||||||||||||||
Rubidium tert-butoxide Rb(OtBu) | sublimable at 185-200 °C/ 10-2 Torr. | M.H. Chisholm, S.R. Drake, A.A. Naiini, W.E. Streib, Polyhedron, 1991, Vol. 10, Iss.3, p. 337–345 | |||||||||||||
Dimethyl aluminum acetylacetonate (CH3)2Al(C5H7O2) | G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74 | ||||||||||||||
Diethyl aluminum acetylacetonate | G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74 | ||||||||||||||
Diisobutyl aluminum acetylacetonate | G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74 | ||||||||||||||
Dimethylamine alane NH(CH3)2 · AlH3 | |||||||||||||||
Trimethylamine alane AlH3 · N(CH3)3 | 16842-00-5 | /www.sigmaaldrich.com/catalog/product/aldrich/455792 | |||||||||||||
Triethylamine alane | Triethylamine alane (TEAA) decomposes on an Al(111) single crystal surface at temperatures above - 310 K | Dubois, L. H., Zegarski, B. R., Gross, M. E., & Nuzzo, R. G. 1991, Surface Science, 244(1-2), 89–95. | |||||||||||||
Dimethylethylamine alane C2H5N(CH3)2 · AlH3 | 124330-23-0 | www.sigmaaldrich.com/catalog/product/aldrich/400386?lang=it®ion=IT | |||||||||||||
Dimethylaluminum hydride (CH3)2AlH | 865-37-2 | www.americanelements.com/dimethylaluminum-hydride-865-37-2#:~:text=Dimethylaluminum%20Hydride%20is%20one%20of,portable%20sources%20of%20hydrogen%20gas. | |||||||||||||
Di-iso-butylaluminum hydride [(CH3)2CHCH2]2AlH | 1191-15-7 | /www.sigmaaldrich.com/catalog/product/aldrich/190306 | |||||||||||||
Calcium bis(cyclopentadienyl) (calcocene) C10H10Ca | PubChem CID: 100977887 | pubchem.ncbi.nlm.nih.gov/compound/Bis_2_4-cyclopentadienyl_-calcium | |||||||||||||
Calcium bis(isopropylcyclopentadienyl) [(C3H7)3C5H2]2Ca · (CH3OCH2)2 | ereztech.com/product/bistri-isopropylcyclopentadienylcalcium-12-dimethoxyethane-adduct-n-a/ | ||||||||||||||
calcium bis[bis(trimethylsilyl)amide C12H36CaN2Si4 | ChemSpider ID: 9243563 | /www.chemspider.com/Chemical-Structure.9243563.html | |||||||||||||
calcium bis[bis(trimethylsilyl)amide dimethoxyethane | Matthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101 | ||||||||||||||
calcium bis[bis(trimethylsilyl)amide tetrahydrofuran | Matthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101 | ||||||||||||||
Calcium bis(acetylacetonate) Ca(CH3COCHCOCH3)2 | 19372-44-2 | Melting point >280 °C | www.americanelements.com/calcium-acetylacetonate-19372-44-2 | ||||||||||||
Calcium bis(hexafluoracetylacetonate) tetraglyme | [i] Malandrino, G., Castelli, F., & Fragalà, I. L., Inorganica Chimica Acta, 1994, 224(1-2), 203–207. [ii] D.M. Tsymbarenko et al. / Polyhedron 134 (2017) 246–256 | ||||||||||||||
Calcium bis(2,2,6,6-tetramethyl-3,5-heptanedonate) Ca(OCC(CH3)3CHCOC(CH3)3)2 | 118448-18-3 | 221-224 °C | www.sigmaaldrich.com/catalog/product/aldrich/362956?lang=it®ion=IT | ||||||||||||
Calcium 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dionate monohydrate | Simon C. Thompson, David J. Cole-hamilton, Douglas D. Gilliland, Michael L. Hitchman, John C. Barnes, Advanced Materials for Optics and Electronics, Volume 1, Issue 2, pages 81–97, April 1992 | ||||||||||||||
Calcium bis(tert-butyl)dimethylketiminate | El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002. | ||||||||||||||
Calcium bis(isopropyl)dimethylketiminate | El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002. | ||||||||||||||
Chromium (III) 2-ethylhexanoate C24H45CrO6 | 3444-17-5 | www.chemicalbook.com/ChemicalProductProperty_EN_CB5738861.htm | |||||||||||||
Chromium (III) diethyldithiocarbamate | Sedlacek, J., Martins, L. M. D. R. S., Danek, P., Pombeiro, A. J. L., & Cvek, B., Journal of Applied Biomedicine, 2014, 12(4), | ||||||||||||||
Chromium tris(acetylacetonate) Cr(C5H7O2)3 | 21679-31-2 | www.sigmaaldrich.com/catalog/product/aldrich/574082?lang=it®ion=IT | |||||||||||||
Chromium tris(trifluoroacetylacetonate) Cr(C5H4F3O2)3 | 14592-89-3 | /www.sigmaaldrich.com/catalog/product/aldrich/495697?lang=it®ion=IT | |||||||||||||
Chromium tris(hexafluoroacetylacetonate) Cr(CF3COCHCOCF3)3 | 14592-80-4 | www.americanelements.com/chromium-iii-hexafluoroacetylacetonate-14592-80-4 | |||||||||||||
hromium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Cr(OCC(CH3)3CHCOC(CH3)3)3 | 14434-47-0 | www.sigmaaldrich.com/catalog/product/aldrich/468223?lang=it®ion=IT | |||||||||||||
Dysprosium tris(acetylacetonate) Dy(C5H7O2)3• xH2O | 18716-76-2 | www.americanelements.com/dysprosium-acetylacetonate-18716-76-2#:~:text=Dysprosium%20Acetylacetonate%20is%20one%20of,energy%20and%20water%20treatment%20applications. | |||||||||||||
Dysprosium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Dy(C11H19O2)3 | 15522-69-7 | www.americanelements.com/tris-2-2-6-6-tetramethyl-3-5-heptanedionato-dysprosium-iii-15522-69-7 | |||||||||||||
Dysprosium tris(6-ethyl-2,2-dimethyl-3,5-decanedionate) Dy(OCC(CH3)3CHCOCF2CF2CF3)3 | 18323-98-3 | www.sigmaaldrich.com/catalog/product/aldrich/237280?lang=it®ion=IT | |||||||||||||
Dysprosium tris(isopropoxide) Dy(OC3H7)3 | 6742-68-3 | www.americanelements.com/dysprosium-iii-isopropoxide-6742-68-3 | |||||||||||||
Dysprosium tris(1-methoxy-2-methyl-2-propanolate) | Van Elshocht, S., Lehnen, P., Seitzinger, B., Abrutis, A., Adelmann, C., Brijs, B., ... Heyns, M., Journal of The Electrochemical Society, 153(9), 2006 |
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd). It is the only known gaseous transition metal compound and the densest known gas under standard ambient temperature and pressure. WF6 is commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.
Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.
Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. It is a process for growing crystalline layers to create complex semiconductor multilayer structures. In contrast to molecular-beam epitaxy (MBE), the growth of crystals is by chemical reaction and not physical deposition. This takes place not in vacuum, but from the gas phase at moderate pressures. As such, this technique is preferred for the formation of devices incorporating thermodynamically metastable alloys, and it has become a major process in the manufacture of optoelectronics, such as Light-emitting diodes, its most widespread application. It was first demonstrated in 1967 at North American Aviation Autonetics Division in Anaheim CA by Harold M. Manasevit.
Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called precursors. These precursors react with the surface of a material one at a time in a sequential, self-limiting, manner. A thin film is slowly deposited through repeated exposure to separate precursors. ALD is a key process in fabricating semiconductor devices, and part of the set of tools for synthesizing nanomaterials.
Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.
Hydride vapour-phase epitaxy (HVPE) is an epitaxial growth technique often employed to produce semiconductors such as GaN, GaAs, InP and their related compounds, in which hydrogen chloride is reacted at elevated temperature with the group-III metals to produce gaseous metal chlorides, which then react with ammonia to produce the group-III nitrides. Carrier gasses commonly used include ammonia, hydrogen and various chlorides.
Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.
Tungsten disulfide is an inorganic chemical compound composed of tungsten and sulfur with the chemical formula WS2. This compound is part of the group of materials called the transition metal dichalcogenides. It occurs naturally as the rare mineral tungstenite. This material is a component of certain catalysts used for hydrodesulfurization and hydrodenitrification.
Gallium(II) telluride, GaTe, is a chemical compound of gallium and tellurium. There is research interest in the structure and electronic properties of GaTe because of the possibility that it, or related compounds, may have applications in the electronics industry. Gallium telluride can be made by reacting the elements or by metal organic vapour deposition (MOCVD).
Metal-organic compounds are a class of chemical compounds that contain metals and organic ligands, but lacking direct metal-carbon bonds. Metal β-diketonates, metal alkoxides, metal dialkylamides, transition metal carboxylate complexes, metal acetylacetonates, and metal phosphine complexes are representative members of this class. Some of metal-organic compounds confer solubility in organic solvents or volatility. Compounds with these properties find applications in materials science for metal organic vapor deposition (MOCVD) or sol-gel processing. Precise definitions of metal-organic compound may vary, however the term may describe:
Richard John Puddephatt, was born 1943 in Aylesbury, England. He is a distinguished university professor in the department of chemistry at the University of Western Ontario, in London, Ontario, Canada. Richard is a former holder of a Canada research chair in material synthesis. He has been studying the fundamental chemistry of gold and other precious metals in the development of new materials for potential applications in health care and electronics. Puddephatt's research interests involve organometallic chemistry related to catalysis and materials science, and he is considered a world expert on platinum and gold chemistry. He has authored two books: The Chemistry of Gold and The Periodic Table of Elements.
A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper indium gallium selenide solid solution on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.
Chemical vapor deposition of ruthenium is a method to deposit thin layers of ruthenium on substrates by Chemical vapor deposition (CVD).
IQE PLC is a British semiconductor company founded 1988 in Cardiff, Wales, which manufactures advanced epitaxial wafers for a wide range of technology applications for wireless, optoelectronic, electronic and solar devices. IQE specialises in advanced silicon and compound semiconductor materials based on gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN) and silicon. The company is the largest independent outsource producer of epiwafers manufactured by metalorganic vapour phase epitaxy (MOCVD), molecular beam epitaxy (MBE) and chemical vapor deposition (CVD).
Tantalum(V) ethoxide is a metalorganic compound with formula Ta2(OC2H5)10, often abbreviated as Ta2(OEt)10. It is a colorless solid that dissolves in some organic solvents but hydrolyzes readily. It is used to prepare films of tantalum(V) oxide.
Aluminium acetylacetonate, also referred to as Al(acac)3, is a coordination complex with formula Al(C5H7O2)3. This aluminium complex with three acetylacetone ligands is used in research on Al-containing materials. The molecule has D3 symmetry, being isomorphous with other octahedral tris(acetylacetonate)s.
Barium acetylacetonate is a compound with formula Ba(C5H7O2)2. It is the Ba2+ complex of the anion acetylacetonate. The compound is typically encountered as an ill-defined hydrate, which would accord with the high coordination number characteristic of barium.
Gregory S. Girolami is the William H. and Janet G. Lycan Professor of Chemistry at the University of Illinois Urbana-Champaign. His research focuses on the synthesis, properties, and reactivity of new inorganic, organometallic, and solid state species. Girolami has been elected a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry, and the American Chemical Society.
Lisa McElwee-White is currently the Colonel Allen R. and Margaret G. Crow Professor of Chemistry at the University of Florida.