List of metal-organic chemical vapour deposition precursors

Last updated

In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD). The success of this method is mainly due to its adaptability and to the increasing interest for the low temperature deposition processes. Correlatively, the increasing demand of various thin film materials for new industrial applications is also a significant reason for the rapid development of MOCVD. Certainly, a wide variety of materials which could not be deposited by the conventional halide CVD process, because halide reactive do not exist or are not volatile, can now be grown by MOCVD. This includes metals and different multi-component materials such as semiconductor and intermetallic compounds as well as carbides, nitrides, oxides, borides, silicides and chalcogenides. Further significant advantages of MOCVD over physical processes are a capability for large scale production, an easier automation, a good conformal coverage, the selectivity and the ability to produce metastable materials. [1]

Thus, much effort has been aimed at the synthesis of new molecular precursors. A productive overview is provided by several exceptional reviews covering fields of MOCVD such as, for instance, epitaxial growth of semiconductor compounds, [2] [3] [4] and low temperature deposition of metals. [5] [6] An overview of metal-organic compounds used for the MOCVD growth of different kind of materials is reported in the following reviews. [7] [8] [9] This is a list of prominent precursor complexes synthesized thus far with suited properties to be utilized for MOCVD processes.

List

Precursor, name, formulaCAS No.Chemical stabilityThemal stabilityEvaporation T (pressure)Vapour pressure (oC/Torr)Decomposition TOligommerizationCrystal structureMelting pointTG dataDSCIR spectraNMR dataSolubilityReferences
Li(TMHD), Lithium tetramethylheptanedionate, C11H19LiO222441-13-0Decomposes at low pressure and room temperatures, [1] stable under N2 or Ar in sealed contanier and decomposes slowly in contact with moist air and rapidly in contact with water.Above 215 °C under high vacuum it decomposes to form ketenes and carbanions [1] 268-270 °C (atmospehric pressure)NA265-268 °CSoluble in water [1] D. Saulys, V. Joshkin, M. Khoudiakov, T.F. Kuech, A.B. Ellis, S.R. Oktyabrsky, L. McCaughan, Journal of Crystal Growth 217 (2000) 287-301
Lithium bis(trimethylsilyl)amide, LiN(SiMe3)24039-Reacts violently with water.
LiNtms2Trimer.png
70-72 °CJ. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012).
Lithium bis(ethyldimethylsilyl)amide, [Li(NSiMe2Et)2]2300585-49-3122/0.2Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(i-propyldimethylsilyl)amide 137/0.2Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(3,3-dimethylbutyldimethylsilyl)amide 225/0.9Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(i-butyldimethylsilyl)amide 145/0.1Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(n-propyldimethylsilyl)amide 171/0.3Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(n-propyldimethylsilyl)amide 130/0.15Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(i-butyldimethylsilyl)amide 145/0.05Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(triethylsilyl)amide 157/0.095Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(n-butyldimethylsilyl)amide 145/0.085Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium dimethylamide, (CH3)2NLi3585-33-9Catches fire spontaneously if exposed to air and in contact with water releases flammable gas. https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-dimethylamide
Dicyclohexylamidolithium, C12H24Li2N4111-55-1High sublimation temperature of 250 °C at which it is also partly thermally decomposing.250 °CPutkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., & Fjellvåg, H., Journal of Materials Chemistry, 2009, 19(46), 8767
Li(acac), Lithium acetylacetonate, C5H7LiO218115-70-3HygroscopicAerosol [1] 250 °CMethanol [1] V. Bornand, Ph. Papet, E. Philippot, Thin Solid Films 1997, 304, 239.
Lithium ethoxide, LiC2H5O2388-07-0Self heating and reacts violently with water.Decomposes at 325 °C. LiOEt is insoluble in hydrocarbons, soluble in EtOH (125g/L), α = 6, 4 (MS), ΔHform = -108.6Powder subliming at 100 °C/vacuo, 150 °C /10-2 torr. https://www.sigmaaldrich.com/catalog/product/aldrich/400203?lang=en
Lithium isopropoxide C3H7LiO2388-10-5"Sensitive to moisture and reacts with water. Material decomposes slowly in contact with moist air and rapidly in contact with water, possibly igniting. Avoid contact with moist air, water, acids, alcohols, ketones, esters, carbon dioxide, halogens."Highly flammable, stable under nitrogen or argon in sealed containers
Lithium isopropoxide C3H7LiO Lithium-isopropoxide-2D-structure.svg
Lithium isopropoxide C3H7LiO
https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-isopropoxide#section=Chemical-and-Physical-Properties
[Li(OtBu)]6, Lithium tert-butoxide, C4H9LiO1907-33-1Stable to light, heat, air, carbon dioxide and strong acids. Moisture sentitive, vigorous reaction to water.108-115 °C [1,2]283 °CSoluble in toluene, hexane, tetrahydrofuran and methyl tert-butyl ether." [1] A. Dabirian, Y. Kuzminykh, S. C. Sandu, S. Harada, E. Wagner, P. Brodard, G. Benvenuti, S.Rushworth, P. Muralt, P. Hoffmann, Cryst. Growth Des. 2011, 1, 203. [2] A. Tanaka, K. Miyashita, T. Tashiro, M. Kimura, T. Sukegawa, J. Cryst. Growth 1995, 148, 324. [3] J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012). [4] Sigma-Aldtritch"
LiTa(OEt)6127503-04-2The double alkoxides have sufficient stability using parent alcohol as solvent. Decomposes in contact with water.The thermal stability and volatility vary with respect to the reaction in solid or liquid state.230/0.2 https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2739827.htm
lithium hexa-iso-propoxytantalate LiTa(i-OPr)6160-180/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
LiTa(t-OBut)6110-120/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
Lithium niobium ethoxide, LiNb(OC2H5)6Moisture SensitiveSuyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi : 10.4028/www.scientific.net/ast.63.7
LiNb(i-OPr)6<140/0.2 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
LiNb(t-OBut)6110-120/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
Sodium niobium ethoxide, NaNb(OC2H5)6Moisture SensitiveSuyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi : 10.4028/www.scientific.net/ast.63.7
Sodium cyclopentadienide, C5H5Na4984-82-1In contact with water releases flammable gases which may ignite spontaneously.Soluble in THF, benzene or liq. NH3"1. (a) Fischer, E. O.; Jira, R.; Hafner, K. Z. Naturforsch. 1953, 8b,(b) Fischer, E. O.; Hafner, W.; Stahl, H. O. Z. Anorg. Allg. Chem.1955, 282, 47. 2. Fehlhammer, W. P.; Herrmann, W. A.; O¨ fele, K. In Synthetic Methods of Organometallic and Inorganic Chemistry; Herrmann, W.A., Brauer, G., Eds.; Thieme: Stuttgart, 1997; Vol. 3, p 50. 3.https://spectrabase.com/spectrum/IMGzWBmNgJE. 4.https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-cyclopentadienide#section=GHS-Classification"
Sodium hexafluoroacetylacetonate, NaC5HF6O222466-49-525/10.3
Sodium hexafluoroacetylacetonate, NaC5HF6O2 Sodium-hexafluoroacetylacetonate-2D-skeletal.svg
Sodium hexafluoroacetylacetonate, NaC5HF6O2
230 °CSoluble in water and warm methoxypropanol.1. Zh. Neorg. Khim. 41, 411, (1996). 2. Rec. Trav. Chim. 114, 242, (1995)
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd)22466-43-9Sublimes between 170 and 255 °C
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd) Sodium-2,2,6,6-tetramethylheptane-3,5-dionate-2D-structure.svg
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd)
M. Tiitta, M. Leskäla, E. Nykänen, P. Soinen, L. Niinstö, Thermochim. acta, 1995, 256 (1), 47-53
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, Na(thd)(phen)Sublimes around 210 °CD. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate 2,2'-bipiridyne, Na(thd)(bipy)It decomposes at 2 stages namely around 90 °C and 140 °CD. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium-niobium hexakis(isopropoxide), NaNb(OiPr)6110-120/0.1
Sodium bis(n-propyldimethylsilyl)amide213/0.3Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(i-butyldimethylsilyl)amide189/0.08Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-butyldimethylsilyl)amide231/0.5Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-hexyldimethylsill)amide265/0.3Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium Tert Butoxide, NaOC(CH3)3865-48-5Stable at room temperature. Decomposes at 300 °C; stable under N2 or Ar in sealed container and decomposes slowly in contact with moist air and violently in contact with water. [1] At 300 °C [1] sublimation: 254 °C [2] (atmospheric pressure)Information not availableInformation not available263 °C [3] "• 30 g/L at 20 °C Medium: tert-butyl alcohol • 70 g/L at 20 °C Medium: Toluene • 130 g/L at 20 °C Medium: Hexane • 380 g/L at 20 °C Medium: Tetrahydrofuran • 50 g/L at 20 °C Medium: xylene • 110 g/L at 20 °C Medium: octane • 220 g/L at 20 °C Medium: Diethyl ether • 450 g/L at 20 °C Medium: Dimethylformamide": [1] https://www.nwmissouri.edu/naturalsciences/sds/s/Sodium%20tert-butoxide.pdf: [2] https://www.albemarle.com/storage/components/T401225.PDF: [3] Simone Manzini, Núria Huguet, Oliver Trapp, Rocco A. Paciello, Thomas Schaub; "Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases" Catalysis Today, Volume 281, Part 2, 2017, Pages 379–386, ISSN 0920-5861
Potassium-niobium hexakis(ethoxide), KNb(OEt)6200/0.8Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi : 10.4028/www.scientific.net/ast.63.7
Potassium tert-butoxide (KOtBu) C4H9KO865-47-4Sublimes at temperature of 220 °C at pressure of 1 Torr [1] NA220/1256 °C-258 °C [2] Soluble in hexane, toluene, diethyl ether and tetrahydrofuran. [1] Feuer et al.Journal of the American Chemical Society1956vol. 78p. 4364,4367

[2] https://www.sigmaaldrich.com/catalog/product/aldrich/156671?lang=de&region=DE [3] Labbow, R., Michalik, D., Reiß, F., Schulz, A. and Villinger, A., 2016. Isolation of Labile Pseudohalogen NSO Species. Angewandte Chemie International Edition, 55(27), pp. 7680–7684.

Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO222441-14-1Hygroscopic
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2 (1) Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2.png
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2
195 °C1. Onoe, A., Tasaki, Y., & Chikuma, K. (2005). Anomalous evaporation characteristics of vitrificated K(DPM) and stable gas supply using disk-shaped K(DPM) precursors for metalorganic chemical vapor deposition. Journal of Crystal Growth, 277(1-4), 546–554. doi : 10.1016/j.jcrysgro.2005.01.077 2. www.molbase.com
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, K(thd)(phen)320-330 °COligomerizes with n up to 7D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Bi(phenyl)3,Triphenylbismuth(III), (C6H5)3Bi603-33-8No specific storage condition76-80 °C [1] Sigma
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)314876-47-2
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3 Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III)-2D-structure.svg
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3
164 °C (Atm) (STREM); 179-185 °C (lit.) (Sigma) [1] Sigma [2] Strem
Ni(hfa)2tmedaEvaporation occurs in the 120–200 _C temperature range, with about 2%residue at 350 _C (Atm under N2)"120–200 °C (Atm pressure under N2)106,7°C [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tta)2tmedaevaporated quantitatively in the 200–330 _C range, with less than 2% residue le at 350_°C. (Atm under N2)

2774(2) A˚ 3, Z = 4, Dc = 1.478 g cm−3

147–149°Cto requestto request [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tmhd)2,Nickel(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionate), Ni(OCC(CH3)3CHCOC(CH3)3)214481-08-4219-223°C (Atm)Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823 [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b.
Ni(acac)2, Nickel(II) acetylacetonate, Ni(C5H7O2)23264-82-2230 - 240°Cethers and aromatic and halogenated hydrocarbons [1] SIGMA [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b. [6] A. Pande, Synlett, 2005, 6, 1042–1043
La(hfa)3diglymenonhygroscopic, can be handled in air"TGA, 10 ""Clmin under N2) reveal that the sublimation processes takes place in the 115-295°C (residue = 2% to 300°C)"74-76 °CEthanol, chloroform, acetone, pentane, toluene and slightly soluble in cyclohexane [7] Graziella Malandrino, Rosalia Licata, Francesco Castelli, Ignazio L. Fragala, and Cristiano Benelli Inorganic Chemistry 1995 34 (25), 6233-6234"
Nb(THD)4, Niobium tetrakis(2,2,6,6-tetramethylheptane-3,5-dionate), C44H76NbO841706-15-4Air and moisture stable, insoluble in water.Under atmospheric pressure and inert atmosphere Li(thd) evaporates completely before ≈270 °C without decomposition. Heating of Nb(thd)4 under similar

conditions results in a solid residue of ≈7% what shows that evaporation and decomposition of this compound goes simultaneously (full decomposition of Nb(thd)4 to Nb2O5 should leave 16.1% residue). [1]

219-220 °C1,2-dimethoxyethane [1] S. Margueron, A. Bartasyte, V. Plausinaitiene, A. Abrutis, P. Boulet, V. Kubilius, Z. Saltyte, Proc. SPIE 2013, 8626, 862612.
Nb(thd)2Cl3, Bis-dipivaloylmethanate niobium N-chloride, C4H10Cl3NbO2110615-13-9Air sensitive. Hydrolyses readily.170 °C [1] 230 °C [1] S. Jung, N. Imaish, Korean, J. Chem. Eng. 1999, 16, 229. [2] Sigma-Aldritch
Niobium pentakis(methoxide), Nb(OMe)5Low volatility200 °C [1] [1] B. J. Curtis, H. R. Brunner, Mater. Res. Bull. 1975, 10, 515.
Nb(OEt)5 , Niobium pentaethoxide, C10H25NbO53236-82-6Air and moisture sensitive. Incompatible with strong acids and strong oxidizing agents.135-145 °C [1] 100-120 °C [2] 5-6 °CDry touluene, ethanol. [1] Y. Sakashita, H. Segawa, J. Appl. Phys. 1995, 77, 5995 [2] Y. Akiyama, K. Shitanaka, H. Murakami, Y. S. Shin, M. Yoshida, N. Imaishi, Thin Solid Films

2007, 515, 4975. [3] Sigma-Aldritch

Niobium ethoxide, Nb(OCH2CH3)53236-82-6Stable at room temperature. Stable under N2 or Ar in sealed container and decomposes quickly in contact with moist air. Reacts with water. [1] At 325-350 °C [2] Information not available21.5 kPa at 500 K [3] At 325-350 °C [2] DimerAt 5 °C [4] Soluble in organic solvents. Decomposes in water.Miscible with organic solvents [4] : [1] https://www.gelest.com/wp-content/uploads/product_msds/AKN590-msds.pdf: [2] Rahtu, Antti (2002). Atomic Layer Deposition of High Permittivity Oxides: Film Growth and In Situ Studies (Thesis). University of Helsinki. ISBN   952-10-0646-3: [3] Niobium(V) ethoxide: [4] Cai Ya-nan, Yang Sheng-hai, Jin Sheng-ming, Yang Hai-ping, Hou Guo-feng, Xia Jiao-yun,"Electrochemical synthesis, characterization and thermal properties of niobium ethoxide"; J. Cent. South Univ. Technol. (2011) 18: 73−77: [5] https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3759592.htm
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)519824-59-0Reacts violently with water
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5 Pentakis(dimethylamino)tantalum(V)-2D-structure.svg
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5
100oC https://www.sigmaaldrich.com/catalog/product/aldrich/496863?lang=en
Tantalum(V) ethoxide, Ta(OC2H5)56074-84-621oC https://www.sigmaaldrich.com/catalog/product/aldrich/760404?lang=en
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3169896-41-7Reacts violently with water
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3 Tris(diethylamido)(tert-butylimido)tantalum(V)-2D-structure.svg
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3
https://www.sigmaaldrich.com/catalog/product/aldrich/521280?lang=en
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta511292-99-2Reacts violently with water
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta Tris(ethylmethylamido)(tert-butylimido)tantalum(V)-2D-structure.svg
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta
https://www.sigmaaldrich.com/catalog/product/aldrich/j100043?lang=en
Cesium-yttrium tetrakis (1,1,1-trifluoro -5,5-dimethylhexane-2,4-dionate) C32H40O8F12CsYVikulova, E. S., Zherikova, K. V., Zelenina, L. N., Trubin, S. V., Sysoev, S. V., Semyannikov, Asanov I. V., Morozova N. B., Igumenov, I. K., J. Chem. Thermodynamics 69 (2014) 137–144
Cesium-yttrium tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate)sublimes at 230 °CA.A. Vorobjev, Course Thesis, http://www.bibliofond.ru/view.aspx?id=555884
Cesium-yttrium tetrakis (hexafluoracetylacetonate) CS[Y(CF3COCHCOCF3)4]M. J. Bennett, F. A. Cotton, P. Legzdins, S. J. Lippard, Inorg. Chem., 1968, 7 (9), pp 1770–1776,
Cesium-lantanum tetrakis (hexafluoracetylacetonate)C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944
Cesium-europium tetrakis (hexafluoracetylacetonate)[i] C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944 [ii] J. H. Burns, M. D. Danford, Inorg. Chem., 1969, 8 (8), pp 1780–1784, doi : 10.1021/ic50078a048
Rubidium acetylacetonate RbC5H7O266169-93-5melting point: 200 °CC.R. Bhattacharjee, M. Bhattacharjee; M.K. Chaudhuri, H. Sangchungnunga, J. Chem. Res. Synopses, 1991, no9, pp. 250–251
Rubidium 2,2,6,6-tetramethylheptane-3,5-dionate C11H19O2Rb166439-15-2Rb(thd) was found to be completely insoluble in supercritical CO2 (0 mol/L) under these conditions: 100-200bar/ 60 °CO. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber, E. Dinjus, J. Supercritical Fluids, 2007, Vol.41, Iss.2, p. 179–186
Rubidium trimethysilyloxidesublimes at 80 °C/ 10-6 Torr and decomposes at 140 °C
Rubidium isopropoxide Rb(OiPr)sublimes under deep vacuum (10-6 Torr) despite its polymeric nature, surprisingly it sublimes at higher temperature (200 °C)
Rubidium tert-butoxide Rb(OtBu)sublimable at 185-200 °C/ 10-2 Torr.M.H. Chisholm, S.R. Drake, A.A. Naiini, W.E. Streib, Polyhedron, 1991, Vol. 10, Iss.3, p. 337–345
Dimethyl aluminum acetylacetonate (CH3)2Al(C5H7O2)G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Diethyl aluminum acetylacetonateG. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Diisobutyl aluminum acetylacetonateG. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Dimethylamine alane NH(CH3)2 · AlH3
Trimethylamine alane AlH3 · N(CH3)316842-00-5/www.sigmaaldrich.com/catalog/product/aldrich/455792
Triethylamine alaneTriethylamine alane (TEAA) decomposes on an Al(111) single crystal surface at temperatures above - 310 KDubois, L. H., Zegarski, B. R., Gross, M. E., & Nuzzo, R. G. 1991, Surface Science, 244(1-2), 89–95.
Dimethylethylamine alane C2H5N(CH3)2 · AlH3124330-23-0www.sigmaaldrich.com/catalog/product/aldrich/400386?lang=it&region=IT
Dimethylaluminum hydride (CH3)2AlH865-37-2www.americanelements.com/dimethylaluminum-hydride-865-37-2#:~:text=Dimethylaluminum%20Hydride%20is%20one%20of,portable%20sources%20of%20hydrogen%20gas.
Di-iso-butylaluminum hydride [(CH3)2CHCH2]2AlH1191-15-7/www.sigmaaldrich.com/catalog/product/aldrich/190306
Calcium bis(cyclopentadienyl) (calcocene) C10H10CaPubChem CID: 100977887pubchem.ncbi.nlm.nih.gov/compound/Bis_2_4-cyclopentadienyl_-calcium
Calcium bis(isopropylcyclopentadienyl) [(C3H7)3C5H2]2Ca · (CH3OCH2)2 ereztech.com/product/bistri-isopropylcyclopentadienylcalcium-12-dimethoxyethane-adduct-n-a/
calcium bis[bis(trimethylsilyl)amide C12H36CaN2Si4ChemSpider ID: 9243563/www.chemspider.com/Chemical-Structure.9243563.html
calcium bis[bis(trimethylsilyl)amide dimethoxyethaneMatthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101
calcium bis[bis(trimethylsilyl)amide tetrahydrofuranMatthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101
Calcium bis(acetylacetonate) Ca(CH3COCHCOCH3)219372-44-2Melting point >280 °Cwww.americanelements.com/calcium-acetylacetonate-19372-44-2
Calcium bis(hexafluoracetylacetonate) tetraglyme[i] Malandrino, G., Castelli, F., & Fragalà, I. L., Inorganica Chimica Acta, 1994, 224(1-2), 203–207. [ii] D.M. Tsymbarenko et al. / Polyhedron 134 (2017) 246–256
Calcium bis(2,2,6,6-tetramethyl-3,5-heptanedonate) Ca(OCC(CH3)3CHCOC(CH3)3)2118448-18-3221-224 °Cwww.sigmaaldrich.com/catalog/product/aldrich/362956?lang=it&region=IT
Calcium 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dionate monohydrateSimon C. Thompson, David J. Cole-hamilton, Douglas D. Gilliland, Michael L. Hitchman, John C. Barnes, Advanced Materials for Optics and Electronics, Volume 1, Issue 2, pages 81–97, April 1992
Calcium bis(tert-butyl)dimethylketiminateEl-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Calcium bis(isopropyl)dimethylketiminateEl-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Chromium (III) 2-ethylhexanoate C24H45CrO63444-17-5www.chemicalbook.com/ChemicalProductProperty_EN_CB5738861.htm
Chromium (III) diethyldithiocarbamateSedlacek, J., Martins, L. M. D. R. S., Danek, P., Pombeiro, A. J. L., & Cvek, B., Journal of Applied Biomedicine, 2014, 12(4),
Chromium tris(acetylacetonate) Cr(C5H7O2)321679-31-2www.sigmaaldrich.com/catalog/product/aldrich/574082?lang=it&region=IT
Chromium tris(trifluoroacetylacetonate) Cr(C5H4F3O2)314592-89-3/www.sigmaaldrich.com/catalog/product/aldrich/495697?lang=it&region=IT
Chromium tris(hexafluoroacetylacetonate) Cr(CF3COCHCOCF3)314592-80-4www.americanelements.com/chromium-iii-hexafluoroacetylacetonate-14592-80-4
hromium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Cr(OCC(CH3)3CHCOC(CH3)3)314434-47-0www.sigmaaldrich.com/catalog/product/aldrich/468223?lang=it&region=IT
Dysprosium tris(acetylacetonate) Dy(C5H7O2)3• xH2O18716-76-2www.americanelements.com/dysprosium-acetylacetonate-18716-76-2#:~:text=Dysprosium%20Acetylacetonate%20is%20one%20of,energy%20and%20water%20treatment%20applications.
Dysprosium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Dy(C11H19O2)315522-69-7www.americanelements.com/tris-2-2-6-6-tetramethyl-3-5-heptanedionato-dysprosium-iii-15522-69-7
Dysprosium tris(6-ethyl-2,2-dimethyl-3,5-decanedionate) Dy(OCC(CH3)3CHCOCF2CF2CF3)318323-98-3www.sigmaaldrich.com/catalog/product/aldrich/237280?lang=it&region=IT
Dysprosium tris(isopropoxide) Dy(OC3H7)36742-68-3www.americanelements.com/dysprosium-iii-isopropoxide-6742-68-3
Dysprosium tris(1-methoxy-2-methyl-2-propanolate)Van Elshocht, S., Lehnen, P., Seitzinger, B., Abrutis, A., Adelmann, C., Brijs, B., ... Heyns, M., Journal of The Electrochemical Society, 153(9), 2006

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Jones, Anthony C.; Hitchman, Michael L., eds. (2008). Chemical Vapour Deposition. doi:10.1039/9781847558794. hdl:1721.1/131818. ISBN   978-0-85404-465-8.[ page needed ]
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Stringfellow, G. B. (July 1988). "Non-hydride group V sources for OMVPE". Journal of Electronic Materials. 17 (4): 327–335. Bibcode:1988JEMat..17..327S. doi:10.1007/BF02652114.
  3. 1 2 3 4 5 6 7 8 9 10 Carmalt, C.J.; Basharat, S. (2007). "Precursors to Semiconducting Materials". Comprehensive Organometallic Chemistry III. pp. 1–34. doi:10.1016/B0-08-045047-4/00166-7. ISBN   978-0-08-045047-6.
  4. 1 2 3 4 5 6 7 Maury, Francis (November 1991). "Organometallic molecular precursors for low-temperature MOCVD of III-V semiconductors". Advanced Materials. 3 (11): 542–548. Bibcode:1991AdM.....3..542M. doi:10.1002/adma.19910031104.
  5. 1 2 Fischer, Roland A. (2 June 1995). "The chemistry of metal CVD. Herausgegeben vonT. T. Kodas undM. J. Hampden-Smith. VCH Verlagsgesellschaft, Weinheim, 1994. 538 S., geb. 228.00 DM. – ISBN 3-527-29071-0". Angewandte Chemie. 107 (11): 1366–1367. Bibcode:1995AngCh.107.1366F. doi:10.1002/ange.19951071132.
  6. 1 2 Vahlas, Constantin (February 2010). "Chemical vapor deposition of metals: From unary systems to complex metallic alloys". In Esther Belin-Ferré (ed.). Surface Properties and Engineering of Complex Intermetallics. Book Series on Complex Metallic Alloys. Vol. 3. pp. 49–81. Bibcode:2010spec.book.....B. doi:10.1142/7733. ISBN   9789814304771.
  7. 1 2 Devi, Anjana (December 2013). "'Old Chemistries' for new applications: Perspectives for development of precursors for MOCVD and ALD applications". Coordination Chemistry Reviews. 257 (23–24): 3332–3384. doi:10.1016/j.ccr.2013.07.025.
  8. Condorelli, Guglielmo G.; Malandrino, Graziella; Fragalà, Ignazio L. (July 2007). "Engineering of molecular architectures of β-diketonate precursors toward new advanced materials". Coordination Chemistry Reviews. 251 (13–14): 1931–1950. doi:10.1016/j.ccr.2007.04.016.
  9. Malandrino, Graziella; Fragalà, Ignazio L. (June 2006). "Lanthanide "second-generation" precursors for MOCVD applications: Effects of the metal ionic radius and polyether length on coordination spheres and mass-transport properties". Coordination Chemistry Reviews. 250 (11–12): 1605–1620. doi:10.1016/j.ccr.2006.03.017.