List of single cell omics methods

Last updated

A list of more than 100 different single cell sequencing (omics) methods have been published. [1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.

List

MethodReferenceSequencing ModeEarly EstimateLate Estimate
Tang method [2] Short Reads20082009
CyTOF [3] Short Reads20112012
STRT-seq / C1 [4] Short Reads20112012
SMART-seq [5] Short Reads20122013
CEL-seq [6] Short Reads20122013
Quartz-Seq [7] Short Reads20122013
PMA / SMA [8] Short Reads20122013
scBS-seq [9] Short Reads20132014
AbPair [10] Short Reads20142014
MARS-seq [11] Short Reads20142015
DR-seq [12] Short Reads20142015
G&T-Seq [13] Short Reads20142015
SCTG [14] Short Reads20142015
SIDR-seq [15] Short Reads20142015
sci-ATAC-seq [16] Short Reads20142015
Hi-SCL [17] Short Reads20152015
SUPeR-seq [18] Short Reads20152015
Drop-Chip [19] Short Reads20152015
CytoSeq [20] Short Reads20152016
inDrop [21] Short Reads20152016
sc-GEM [22] Short Reads20152016
scTrio-seq [23] Short Reads20152016
scM&T-seq [24] Short Reads20152016
PLAYR [25] Short Reads20152016
Genshaft-et-al-2016 [26] Short Reads20152016
Darmanis-et-al-2016 [27] Short Reads20152016
CRISP-seq [28] Short Reads20152016
scGESTALT [29] Short Reads20152016
CEL-Seq2 / C1 [30] Short Reads20152016
STRT-seq-2i [31] Short Reads20162017
RNAseq @10xgenomics [32] Short Reads20162017
RNAseq / Gene Expression @nanostringtech [33] Short Reads20162017
sc Targeted Gene Expression @fluidigm [34] Short Reads20162017
scTCR Wafergen [35] Short Reads20162017
CROP-seq [36] Short Reads20162017
SiC-seq [37] Short Reads20162017
mcSCRB-seq [38] Short Reads20162017
Patch-seq [39] Short Reads20162017
Geo-seq [40] Short Reads20162017
scNOMe-seq [41] Short Reads20162017
scCOOL-seq [42] Short Reads20162017
CUT&Run [43] Short Reads20162017
MATQ-seq [44] Short Reads20162017
Quartz-Seq2 [45] Short Reads20172018
Seq-Well [46] Short Reads20172018
DroNC-Seq [47] Short Reads20172018
sci-RNA-seq [48] Short Reads20172018
scATAC @10xgenomics [49] Short Reads20172018
scVDJ @10xgenomics [50] Short Reads20172018
scNMT triple omics [51] Short Reads20172018
SPLIT-seq Parse Biosciences [52] Short Reads20172018
CITE-Seq [53] Short Reads20172018
scMNase-seq [54] Short Reads20172018
Chaligne-et-al-2018 [55] Short Reads20172018
LINNAEUS [56] Short Reads20172018
TracerSeq [57] Short Reads20172018
CellTag [58] Short Reads20172018
ScarTrace [59] Short Reads20172018
scRNA-Seq Dolomite Bio [60] Short Reads20172018
Trac-looping [61] Short Reads20172018
Perturb-ATAC [62] Short Reads20182019
scMethylation [63] Short Reads20182019
scHiC [64] Short Reads20182019
Multiplex Droplet scRNAseq [65] Short Reads20182019
sci-CAR [66] Short Reads20182019
C1 CAGE single cell [67] Short Reads20182019
sc paired microRNA-mRNA [68] Short Reads20182019
scCAT-seq [69] Short Reads20182019
REAP-seq @fluidigm [70] Short Reads20182019
scCC [71] Short Reads20182019
yscRNA-SEQ [72] Short Reads20182019
TARGET-seq [73] Short Reads20182019
MULTI-seq [74] Short Reads20182019
snRNA-seq [75] Short Reads20182019
sci-RNA-seq3 [76] Short Reads20182019
BRIF-seq [77] Short Reads20182019
Drop-seq Dolomite Bio [60] Short Reads20182019
Slide-seq [78] Short Reads20182019
CUT&Tag [79] Short Reads20182019
CellTagging [80] Short Reads20182019
DART-Seq [81] Short Reads20182019
scDamID&T [82] Short Reads20182019
ACT-seq [83] Short Reads20182019
Sci-Hi-C [84] Short Reads20182019
Slide-seq [85] Short Reads20182019
Simplified-Drop-seq [86] Short Reads20182019
scChIC-seq [87] Short Reads20182019
Dip-C [88] Short Reads20182019
CoBATCH [89] Short Reads20182019
Convert-seq [90] Short Reads20182019
Droplet-based scATAC-seq [91] Short Reads20182019
ECCITE-seq [92] Short Reads20182019
dsciATAC-seq [91] Short Reads20182019
CLEVER-seq [93] Short Reads20182019
scISOr-Seq [94] Short Reads20182019
MARS-seq2.0 [95] Short Reads20182019
nano-NOMe [96] Long Reads20182019
MeSMLR-seq [97] Long Reads20182019
SMAC-seq [98] Long Reads20182019
MoonTag/SunTag [99] Short Reads20182019
SCoPE2 [100] Short Reads20182019
sci-fate [101] Short Reads20182019
μDamID [102] Short Reads20182019
Methyl-HiC [103] Short Reads20182019
RAGE-seq [104] Long Reads20182019
Paired-Seq [105] Short Reads20182019
Tn5Prime [106] Short Reads20182019
NanoPARE [107] Short Reads20182019
BART-Seq [108] Short Reads20182019
scDam&T-seq [109] Short Reads20182019
itChIP-seq [110] Short Reads20182019
SNARE-seq [111] Short Reads20182019
ASTAR-seq [112] Short Reads20182019
sci-Plex [113] Short Reads20182019
MIX-Seq [114] Short Reads20182019
microSPLiT [115] Short Reads20182019
PAIso-seq [116] Short Reads20182019
FIN-Seq [117] Short Reads20182019
LIBRA-seq [118] Short Reads20182019
scifi-RNA-seq [119] Short Reads20182019
plexDIA [120] Short Reads20212021
MPX [121] Short Reads20232023

Related Research Articles

<span class="mw-page-title-main">Functional genomics</span> Field of molecular biology

Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional "candidate-gene" approach.

Cross-linking and immunoprecipitation is a method used in molecular biology that combines UV crosslinking with immunoprecipitation in order to identify RNA binding sites of proteins on a transcriptome-wide scale, thereby increasing our understanding of post-transcriptional regulatory networks. CLIP can be used either with antibodies against endogenous proteins, or with common peptide tags or affinity purification, which enables the possibility of profiling model organisms or RBPs otherwise lacking suitable antibodies.

<span class="mw-page-title-main">Chromosome conformation capture</span>

Chromosome conformation capture techniques are a set of molecular biology methods used to analyze the spatial organization of chromatin in a cell. These methods quantify the number of interactions between genomic loci that are nearby in 3-D space, but may be separated by many nucleotides in the linear genome. Such interactions may result from biological functions, such as promoter-enhancer interactions, or from random polymer looping, where undirected physical motion of chromatin causes loci to collide. Interaction frequencies may be analyzed directly, or they may be converted to distances and used to reconstruct 3-D structures.

<span class="mw-page-title-main">ABI Solid Sequencing</span>

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation DNA sequencing technology developed by Life Technologies and has been commercially available since 2006. This next generation technology generates 108 - 109 small sequence reads at one time. It uses 2 base encoding to decode the raw data generated by the sequencing platform into sequence data.

ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated proteins. It can be used to map global binding sites precisely for any protein of interest. Previously, ChIP-on-chip was the most common technique utilized to study these protein–DNA relations.

Epigenomics is the study of the complete set of epigenetic modifications on the genetic material of a cell, known as the epigenome. The field is analogous to genomics and proteomics, which are the study of the genome and proteome of a cell. Epigenetic modifications are reversible modifications on a cell's DNA or histones that affect gene expression without altering the DNA sequence. Epigenomic maintenance is a continuous process and plays an important role in stability of eukaryotic genomes by taking part in crucial biological mechanisms like DNA repair. Plant flavones are said to be inhibiting epigenomic marks that cause cancers. Two of the most characterized epigenetic modifications are DNA methylation and histone modification. Epigenetic modifications play an important role in gene expression and regulation, and are involved in numerous cellular processes such as in differentiation/development and tumorigenesis. The study of epigenetics on a global level has been made possible only recently through the adaptation of genomic high-throughput assays.

<span class="mw-page-title-main">RNA-Seq</span> Lab technique in cellular biology

RNA-Seq is a technique that uses next-generation sequencing to reveal the presence and quantity of RNA molecules in a biological sample, providing a snapshot of gene expression in the sample, also known as transcriptome.

Paired-end tags (PET) are the short sequences at the 5’ and 3' ends of a DNA fragment which are unique enough that they (theoretically) exist together only once in a genome, therefore making the sequence of the DNA in between them available upon search or upon further sequencing. Paired-end tags (PET) exist in PET libraries with the intervening DNA absent, that is, a PET "represents" a larger fragment of genomic or cDNA by consisting of a short 5' linker sequence, a short 5' sequence tag, a short 3' sequence tag, and a short 3' linker sequence. It was shown conceptually that 13 base pairs are sufficient to map tags uniquely. However, longer sequences are more practical for mapping reads uniquely. The endonucleases used to produce PETs give longer tags but sequences of 50–100 base pairs would be optimal for both mapping and cost efficiency. After extracting the PETs from many DNA fragments, they are linked (concatenated) together for efficient sequencing. On average, 20–30 tags could be sequenced with the Sanger method, which has a longer read length. Since the tag sequences are short, individual PETs are well suited for next-generation sequencing that has short read lengths and higher throughput. The main advantages of PET sequencing are its reduced cost by sequencing only short fragments, detection of structural variants in the genome, and increased specificity when aligning back to the genome compared to single tags, which involves only one end of the DNA fragment.

Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. For example, in cancer, sequencing the DNA of individual cells can give information about mutations carried by small populations of cells. In development, sequencing the RNAs expressed by individual cells can give insight into the existence and behavior of different cell types. In microbial systems, a population of the same species can appear genetically clonal. Still, single-cell sequencing of RNA or epigenetic modifications can reveal cell-to-cell variability that may help populations rapidly adapt to survive in changing environments.

ATAC-seq is a technique used in molecular biology to assess genome-wide chromatin accessibility. In 2013, the technique was first described as an alternative advanced method for MNase-seq, FAIRE-Seq and DNase-Seq. ATAC-seq is a faster analysis of the epigenome than DNase-seq or MNase-seq.

Perturb-seq refers to a high-throughput method of performing single cell RNA sequencing (scRNA-seq) on pooled genetic perturbation screens. Perturb-seq combines multiplexed CRISPR mediated gene inactivations with single cell RNA sequencing to assess comprehensive gene expression phenotypes for each perturbation. Inferring a gene’s function by applying genetic perturbations to knock down or knock out a gene and studying the resulting phenotype is known as reverse genetics. Perturb-seq is a reverse genetics approach that allows for the investigation of phenotypes at the level of the transcriptome, to elucidate gene functions in many cells, in a massively parallel fashion.

Single-cell transcriptomics examines the gene expression level of individual cells in a given population by simultaneously measuring the RNA concentration of hundreds to thousands of genes. Single-cell transcriptomics makes it possible to unravel heterogeneous cell populations, reconstruct cellular developmental pathways, and model transcriptional dynamics — all previously masked in bulk RNA sequencing.

Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. Here, mRNA serves as a transient intermediary molecule in the information network, whilst non-coding RNAs perform additional diverse functions. A transcriptome captures a snapshot in time of the total transcripts present in a cell. Transcriptomics technologies provide a broad account of which cellular processes are active and which are dormant. A major challenge in molecular biology is to understand how a single genome gives rise to a variety of cells. Another is how gene expression is regulated.

<span class="mw-page-title-main">Single cell epigenomics</span> Study of epigenomics in individual cells by single cell sequencing

Single cell epigenomics is the study of epigenomics in individual cells by single cell sequencing. Since 2013, methods have been created including whole-genome single-cell bisulfite sequencing to measure DNA methylation, whole-genome ChIP-sequencing to measure histone modifications, whole-genome ATAC-seq to measure chromatin accessibility and chromosome conformation capture.

<span class="mw-page-title-main">Spatial transcriptomics</span> Range of methods designed for assigning cell types

Spatial transcriptomics is a method for assigning cell types to their locations in the histological sections and can also be used to determine subcellular localization of mRNA molecules. First described in 2016 by Ståhl et al., it has since undergone a variety of improvements and modifications.

CITE-Seq is a method for performing RNA sequencing along with gaining quantitative and qualitative information on surface proteins with available antibodies on a single cell level. So far, the method has been demonstrated to work with only a few proteins per cell. As such, it provides an additional layer of information for the same cell by combining both proteomics and transcriptomics data. For phenotyping, this method has been shown to be as accurate as flow cytometry by the groups that developed it. It is currently one of the main methods, along with REAP-Seq, to evaluate both gene expression and protein levels simultaneously in different species.

<span class="mw-page-title-main">MNase-seq</span> Method used to analyse protein interactions with DNA

MNase-seq, short for micrococcal nuclease digestion with deep sequencing, is a molecular biological technique that was first pioneered in 2006 to measure nucleosome occupancy in the C. elegans genome, and was subsequently applied to the human genome in 2008. Though, the term ‘MNase-seq’ had not been coined until a year later, in 2009. Briefly, this technique relies on the use of the non-specific endo-exonuclease micrococcal nuclease, an enzyme derived from the bacteria Staphylococcus aureus, to bind and cleave protein-unbound regions of DNA on chromatin. DNA bound to histones or other chromatin-bound proteins may remain undigested. The uncut DNA is then purified from the proteins and sequenced through one or more of the various Next-Generation sequencing methods.

<span class="mw-page-title-main">RNA timestamp</span> Technology that enables the age of any given RNA transcript to be inferred by exploiting RNA editing

An RNA timestamp is a technology that enables the age of any given RNA transcript to be inferred by exploiting RNA editing. In this technique, the RNA of interest is tagged to an adenosine rich reporter motif that consists of multiple MS2 binding sites. These MS2 binding sites recruit a complex composed of ADAR2 and MCP. The binding of the ADAR2 enzyme to the RNA timestamp initiates the gradual conversion of adenosine to inosine molecules. Over time, these edits accumulate and are then read through RNA-seq. This technology allows us to glean cell-type specific temporal information associated with RNA-seq data, that until now, has not been accessible.

Single-cell genome and epigenome by transposases sequencing (scGET-seq) is a DNA sequencing method for profiling open and closed chromatin. In contrast to single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), which only targets active euchromatin, scGET-seq is also capable of probing inactive heterochromatin.

References

  1. "Single-Cell-Omics.v2.3.13 @albertvilella". Google Docs. Retrieved 2020-01-01.
  2. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. (May 2009). "mRNA-Seq whole-transcriptome analysis of a single cell". Nature Methods. 6 (5): 377–82. doi:10.1038/nmeth.1315. PMID   19349980. S2CID   16570747.
  3. "Fluidigm | Single-Cell Advances". www.fluidigm.com.
  4. Hashimshony T, Wagner F, Sher N, Yanai I (September 2012). "CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification". Cell Reports. 2 (3): 666–73. doi: 10.1016/j.celrep.2012.08.003 . PMID   22939981.
  5. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. (February 2014). "Quantitative single-cell RNA-seq with unique molecular identifiers". Nature Methods. 11 (2): 163–6. doi:10.1038/nmeth.2772. PMID   24363023. S2CID   6765530.
  6. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. (February 2014). "Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types". Science. 343 (6172): 776–9. Bibcode:2014Sci...343..776J. doi:10.1126/science.1247651. PMC   4412462 . PMID   24531970.
  7. Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, Ueda HR (April 2013). "Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity". Genome Biology. 14 (4): R31. doi: 10.1186/gb-2013-14-4-r31 . PMC   4054835 . PMID   23594475.
  8. Pan X, Durrett RE, Zhu H, Tanaka Y, Li Y, Zi X, et al. (January 2013). "Two methods for full-length RNA sequencing for low quantities of cells and single cells". Proceedings of the National Academy of Sciences of the United States of America. 110 (2): 594–9. Bibcode:2013PNAS..110..594P. doi: 10.1073/pnas.1217322109 . PMC   3545756 . PMID   23267071.
  9. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. (August 2014). "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity". Nature Methods. 11 (8): 817–820. doi:10.1038/nmeth.3035. PMC   4117646 . PMID   25042786.
  10. Briggs AW, Goldfless SJ, Timberlake S, Belmont BJ, Clouser CR, Koppstein D, et al. (May 5, 2017). "Tumor-infiltrating immune repertoires captured by single-cell barcoding in emulsion". bioRxiv: 134841. doi: 10.1101/134841 .
  11. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R (November 2013). "Smart-seq2 for sensitive full-length transcriptome profiling in single cells". Nature Methods. 10 (11): 1096–8. doi:10.1038/nmeth.2639. PMID   24056875. S2CID   6356570.
  12. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A (March 2015). "Integrated genome and transcriptome sequencing of the same cell". Nature Biotechnology. 33 (3): 285–289. doi:10.1038/nbt.3129. PMC   4374170 . PMID   25599178.
  13. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. (June 2015). "G&T-seq: parallel sequencing of single-cell genomes and transcriptomes". Nature Methods. 12 (6): 519–22. doi:10.1038/nmeth.3370. PMID   25915121. S2CID   969246.
  14. Li W, Calder RB, Mar JC, Vijg J (February 2015). "Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles". Mutation Research. 772: 55–62. doi:10.1016/j.mrfmmm.2015.01.002. PMC   4342853 . PMID   25733965.
  15. Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, et al. (January 2018). "SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells". Genome Research. 28 (1): 75–87. doi:10.1101/gr.223263.117. PMC   5749184 . PMID   29208629.
  16. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, et al. (May 2015). "Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing". Science. 348 (6237): 910–4. Bibcode:2015Sci...348..910C. doi:10.1126/science.aab1601. PMC   4836442 . PMID   25953818.
  17. Rotem A, Ram O, Shoresh N, Sperling RA, Schnall-Levin M, Zhang H, et al. (January 1, 2015). "High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics". PLOS ONE. 10 (5): e0116328. Bibcode:2015PLoSO..1016328R. doi: 10.1371/journal.pone.0116328 . PMC   4441486 . PMID   26000628.
  18. Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y (July 2015). "Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos". Genome Biology. 16 (1): 148. doi: 10.1186/s13059-015-0706-1 . PMC   4511241 . PMID   26201400.
  19. "Drop-Chip". pubs.broadinstitute.org.
  20. Fan HC, Fu GK, Fodor SP (February 2015). "Expression profiling. Combinatorial labeling of single cells for gene expression cytometry". Science. 347 (6222): 1258367. doi:10.1126/science.1258367. PMID   25657253. S2CID   5493175.
  21. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. (May 2015). "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells". Cell. 161 (5): 1187–1201. doi:10.1016/j.cell.2015.04.044. PMC   4441768 . PMID   26000487.
  22. Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q, Tan RZ, et al. (October 2016). "Single-cell multimodal profiling reveals cellular epigenetic heterogeneity". Nature Methods. 13 (10): 833–6. doi:10.1038/nmeth.3961. PMID   27525975. S2CID   3531201.
  23. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. (March 2016). "Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas". Cell Research. 26 (3): 304–19. doi:10.1038/cr.2016.23. PMC   4783472 . PMID   26902283.
  24. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. (March 2016). "Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity". Nature Methods. 13 (3): 229–232. doi:10.1038/nmeth.3728. PMC   4770512 . PMID   26752769.
  25. Frei AP, Bava FA, Zunder ER, Hsieh EW, Chen SY, Nolan GP, Gherardini PF (March 2016). "Highly multiplexed simultaneous detection of RNAs and proteins in single cells". Nature Methods. 13 (3): 269–75. doi:10.1038/nmeth.3742. PMC   4767631 . PMID   26808670.
  26. Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan SM, Ziegler CG, et al. (September 2016). "Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction". Genome Biology. 17 (1): 188. doi: 10.1186/s13059-016-1045-6 . PMC   5027636 . PMID   27640647.
  27. Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S, Samghababi P, et al. (October 2017). "Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma". Cell Reports. 21 (5): 1399–1410. doi:10.1016/j.celrep.2017.10.030. PMC   5810554 . PMID   29091775.
  28. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, et al. (December 2016). "Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq". Cell. 167 (7): 1883–1896.e15. doi: 10.1016/j.cell.2016.11.039 . PMID   27984734.
  29. Raj B, Wagner DE, McKenna A, Pandey S, Klein AM, Shendure J, et al. (June 2018). "Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain". Nature Biotechnology. 36 (5): 442–450. doi:10.1038/nbt.4103. PMC   5938111 . PMID   29608178.
  30. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. (April 2016). "CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq". Genome Biology. 17 (1): 77. doi: 10.1186/s13059-016-0938-8 . PMC   4848782 . PMID   27121950.
  31. Hochgerner H, Lönnerberg P, Hodge R, Mikes J, Heskol A, Hubschle H, et al. (November 2017). "STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array". Scientific Reports. 7 (1): 16327. Bibcode:2017NatSR...716327H. doi:10.1038/s41598-017-16546-4. PMC   5703850 . PMID   29180631.
  32. "Single Cell RNA-Seq". 10x Genomic.
  33. "nCounter® Technology". NanoString Technologies.
  34. "Fluidigm | Consumables | Single-Cell Targeted Gene Expression". www.fluidigm.com.
  35. Inc, WaferGen Bio-systems. "WaferGen Presents Single-Cell T-Cell Receptor Sequencing Results Using the ICELL8™ Single-Cell System at the 2016 Single Cell Genomics Meeting". www.prnewswire.com.{{cite web}}: |last= has generic name (help)
  36. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, et al. (March 2017). "Pooled CRISPR screening with single-cell transcriptome readout". Nature Methods. 14 (3): 297–301. doi:10.1038/nmeth.4177. PMC   5334791 . PMID   28099430.
  37. Lan F, Demaree B, Ahmed N, Abate AR (July 2017). "Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding". Nature Biotechnology. 35 (7): 640–646. doi:10.1038/nbt.3880. PMC   5531050 . PMID   28553940.
  38. Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, et al. (October 18, 2017). "mcSCRB-seq: sensitive and powerful single-cell RNA sequencing". bioRxiv: 188367. doi: 10.1101/188367 .
  39. Cadwell CR, Sandberg R, Jiang X, Tolias AS (July 2017). "Q&A: using Patch-seq to profile single cells". BMC Biology. 15 (1): 58. doi: 10.1186/s12915-017-0396-0 . PMC   5499043 . PMID   28679385.
  40. Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N (March 2017). "Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq". Nature Protocols. 12 (3): 566–580. doi:10.1038/nprot.2017.003. PMID   28207000. S2CID   3879096.
  41. Pott S (June 2017). Ren B (ed.). "Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells". eLife. 6: e23203. doi: 10.7554/eLife.23203 . PMC   5487215 . PMID   28653622.
  42. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, et al. (August 2017). "Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells". Cell Research. 27 (8): 967–988. doi:10.1038/cr.2017.82. PMC   5539349 . PMID   28621329.
  43. Skene PJ, Henikoff S (January 2017). Reinberg D (ed.). "An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites". eLife. 6: e21856. doi: 10.7554/eLife.21856 . PMC   5310842 . PMID   28079019.
  44. Sheng K, Cao W, Niu Y, Deng Q, Zong C (March 2017). "Effective detection of variation in single-cell transcriptomes using MATQ-seq". Nature Methods. 14 (3): 267–270. doi:10.1038/nmeth.4145. PMID   28092691. S2CID   582788.
  45. Sasagawa Y, Danno H, Takada H, Ebisawa M, Tanaka K, Hayashi T, et al. (March 2018). "Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads". Genome Biology. 19 (1): 29. doi: 10.1186/s13059-018-1407-3 . PMC   5845169 . PMID   29523163.
  46. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. (April 2017). "Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput". Nature Methods. 14 (4): 395–398. doi:10.1038/nmeth.4179. hdl:1721.1/113430. PMC   5376227 . PMID   28192419.
  47. Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, et al. (October 2017). "Massively parallel single-nucleus RNA-seq with DroNc-seq". Nature Methods. 14 (10): 955–958. doi:10.1038/nmeth.4407. PMC   5623139 . PMID   28846088.
  48. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. (August 2017). "Comprehensive single-cell transcriptional profiling of a multicellular organism". Science. 357 (6352): 661–667. Bibcode:2017Sci...357..661C. doi:10.1126/science.aam8940. PMC   5894354 . PMID   28818938.
  49. "Single Cell ATAC - 10x Genomics".
  50. "Single Cell Immune Profiling - 10x Genomics".
  51. Argelaguet R, Mohammed H, Clark SJ, Stapel LC, Krueger C, Kapourani CA, et al. (January 13, 2019). "Single cell multi-omics profiling reveals a hierarchical epigenetic landscape during mammalian germ layer specification". bioRxiv: 519207. doi: 10.1101/519207 .
  52. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. (April 2018). "Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding". Science. 360 (6385): 176–182. Bibcode:2018Sci...360..176R. doi: 10.1126/science.aam8999 . PMC   7643870 . PMID   29545511.
  53. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. (September 2017). "Simultaneous epitope and transcriptome measurement in single cells". Nature Methods. 14 (9): 865–868. doi:10.1038/nmeth.4380. PMC   5669064 . PMID   28759029.
  54. Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W, et al. (October 2018). "Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing". Nature. 562 (7726): 281–285. Bibcode:2018Natur.562..281L. doi:10.1038/s41586-018-0567-3. PMC   8353605 . PMID   30258225. S2CID   52841785.
  55. Nam AS, Kim KT, Chaligne R, Izzo F, Ang C, Abu-Zeinah G, et al. (October 16, 2018). "High throughput droplet single-cell Genotyping of Transcriptomes (GoT) reveals the cell identity dependency of the impact of somatic mutations". bioRxiv: 444687. doi: 10.1101/444687 .
  56. Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, Junker JP (June 2018). "Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars". Nature Biotechnology. 36 (5): 469–473. doi:10.1038/nbt.4124. PMC   5942543 . PMID   29644996.
  57. Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM (June 2018). "Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo". Science. 360 (6392): 981–987. Bibcode:2018Sci...360..981W. doi:10.1126/science.aar4362. PMC   6083445 . PMID   29700229.
  58. Guo C, Kong W, Kamimoto K, Rivera-Gonzalez GC, Yang X, Kirita Y, Morris SA (May 2019). "CellTag Indexing: genetic barcode-based sample multiplexing for single-cell genomics". Genome Biology. 20 (1): 90. doi: 10.1186/s13059-019-1699-y . PMC   6509836 . PMID   31072405.
  59. Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A (April 2018). "Whole-organism clone tracing using single-cell sequencing". Nature. 556 (7699): 108–112. Bibcode:2018Natur.556..108A. doi:10.1038/nature25969. PMID   29590089. S2CID   4633026.
  60. 1 2 "Nadia Instrument". Dolomite Bio.
  61. Lai B, Tang Q, Jin W, Hu G, Wangsa D, Cui K, et al. (September 2018). "Trac-looping measures genome structure and chromatin accessibility". Nature Methods. 15 (9): 741–747. doi:10.1038/s41592-018-0107-y. PMC   7212307 . PMID   30150754.
  62. Rubin AJ, Parker KR, Satpathy AT, Qi Y, Wu B, Ong AJ, et al. (January 2019). "Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks". Cell. 176 (1–2): 361–376.e17. doi:10.1016/j.cell.2018.11.022. PMC   6329648 . PMID   30580963.
  63. Karemaker ID, Vermeulen M (September 2018). "Single-Cell DNA Methylation Profiling: Technologies and Biological Applications". Trends in Biotechnology. 36 (9): 952–965. doi:10.1016/j.tibtech.2018.04.002. hdl: 2066/200393 . PMID   29724495. S2CID   19248693.
  64. de Wit E (May 2017). "Capturing heterogeneity: single-cell structures of the 3D genome". Nature Structural & Molecular Biology. 24 (5): 437–438. doi:10.1038/nsmb.3404. PMID   28471429. S2CID   5132000.
  65. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. (January 2018). "Multiplexed droplet single-cell RNA-sequencing using natural genetic variation". Nature Biotechnology. 36 (1): 89–94. doi:10.1038/nbt.4042. PMC   5784859 . PMID   29227470.
  66. Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, et al. (September 2018). "Joint profiling of chromatin accessibility and gene expression in thousands of single cells". Science. 361 (6409): 1380–1385. Bibcode:2018Sci...361.1380C. doi:10.1126/science.aau0730. PMC   6571013 . PMID   30166440.
  67. Kouno T, Moody J, Kwon AT, Shibayama Y, Kato S, Huang Y, et al. (January 2019). "C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution". Nature Communications. 10 (1): 360. Bibcode:2019NatCo..10..360K. doi:10.1038/s41467-018-08126-5. PMC   6341120 . PMID   30664627.
  68. Wang N, Zheng J, Chen Z, Liu Y, Dura B, Kwak M, et al. (January 2019). "Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation". Nature Communications. 10 (1): 95. Bibcode:2019NatCo..10...95W. doi:10.1038/s41467-018-07981-6. PMC   6327095 . PMID   30626865.
  69. Liu L, Liu C, Quintero A, Wu L, Yuan Y, Wang M, et al. (January 2019). "Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity". Nature Communications. 10 (1): 470. Bibcode:2019NatCo..10..470L. doi:10.1038/s41467-018-08205-7. PMC   6349937 . PMID   30692544.
  70. Corporation, Fluidigm (January 31, 2019). "Fluidigm Introduces REAP-Seq for Multi-Omic Single-Cell Analysis on the C1". GlobeNewswire News Room (Press release).
  71. Moudgil A, Wilkinson MN, Chen X, He J, Cammack AJ, Vasek MJ, et al. (February 1, 2019). "Self-reporting transposons enable simultaneous readout of gene expression and transcription factor binding in single cells". bioRxiv. 182 (4): 992–1008.e21. doi: 10.1101/538553 . PMC   7510185 . PMID   32710817.
  72. Nadal-Ribelles M, Islam S, Wei W, Latorre P, Nguyen M, de Nadal E, et al. (April 2019). "Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations". Nature Microbiology. 4 (4): 683–692. doi:10.1038/s41564-018-0346-9. PMC   6433287 . PMID   30718850.
  73. Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, et al. (March 2019). "Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing". Molecular Cell. 73 (6): 1292–1305.e8. doi:10.1016/j.molcel.2019.01.009. PMC   6436961 . PMID   30765193.
  74. McGinnis CS, Patterson DM, Winkler J, Conrad DN, Hein MY, Srivastava V, et al. (July 2019). "MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices". Nature Methods. 16 (7): 619–626. doi:10.1038/s41592-019-0433-8. PMC   6837808 . PMID   31209384.
  75. Gaublomme JT, Li B, McCabe C, Knecht A, Yang Y, Drokhlyansky E, et al. (July 2019). "Nuclei multiplexing with barcoded antibodies for single-nucleus genomics". Nature Communications. 10 (1): 2907. Bibcode:2019NatCo..10.2907G. doi:10.1038/s41467-019-10756-2. PMC   6606589 . PMID   31266958.
  76. "Mouse RNA Atlas". oncoscape.v3.sttrcancer.org.
  77. Li X, Chen L, Zhang Q, Sun Y, Li Q, Yan J (March 2019). "BRIF-Seq: Bisulfite-Converted Randomly Integrated Fragments Sequencing at the Single-Cell Level". Molecular Plant. 12 (3): 438–446. doi: 10.1016/j.molp.2019.01.004 . PMID   30639749.
  78. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. (March 2019). "Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution". Science. 363 (6434): 1463–1467. Bibcode:2019Sci...363.1463R. doi:10.1126/science.aaw1219. PMC   6927209 . PMID   30923225.
  79. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. (April 2019). "CUT&Tag for efficient epigenomic profiling of small samples and single cells". Nature Communications. 10 (1): 1930. Bibcode:2019NatCo..10.1930K. doi:10.1038/s41467-019-09982-5. PMC   6488672 . PMID   31036827.
  80. Biddy, Brent A. (March 7, 2019). "Single-cell mapping of lineage and identity via CellTagging". Protocols.io. doi: 10.17504/protocols.io.yxifxke .
  81. Saikia M, Burnham P, Keshavjee SH, Wang MF, Heyang M, Moral-Lopez P, et al. (January 2019). "Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells". Nature Methods. 16 (1): 59–62. doi:10.1038/s41592-018-0259-9. PMC   6378878 . PMID   30559431.
  82. Rooijers K, Markodimitraki CM, Rang FJ, de Vries SS, Chialastri A, de Luca KL, et al. (July 2019). "Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells". Nature Biotechnology. 37 (7): 766–772. doi:10.1038/s41587-019-0150-y. PMC   6609448 . PMID   31209373.
  83. Carter B, Ku WL, Kang JY, Hu G, Perrie J, Tang Q, Zhao K (August 2019). "Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq)". Nature Communications. 10 (1): 3747. Bibcode:2019NatCo..10.3747C. doi:10.1038/s41467-019-11559-1. PMC   6702168 . PMID   31431618.
  84. Ramani V, Deng X, Qiu R, Lee C, Disteche CM, Noble WS, et al. (September 2019). "Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells". Methods. 170: 61–68. doi:10.1016/j.ymeth.2019.09.012. PMC   6949367 . PMID   31536770.
  85. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. (March 2019). "Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution". Science. 363 (6434): 1463–1467. Bibcode:2019Sci...363.1463R. doi:10.1126/science.aaw1219. PMC   6927209 . PMID   30923225.
  86. Biočanin M, Bues J, Dainese R, Amstad E, Deplancke B (April 2019). "Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip". Lab on a Chip. 19 (9): 1610–1620. doi: 10.1039/C9LC00014C . PMID   30920557.
  87. Ku WL, Nakamura K, Gao W, Cui K, Hu G, Tang Q, et al. (April 2019). "Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification". Nature Methods. 16 (4): 323–325. doi:10.1038/s41592-019-0361-7. PMC   7187538 . PMID   30923384.
  88. Tan L, Xing D, Daley N, Xie XS (April 2019). "Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems". Nature Structural & Molecular Biology. 26 (4): 297–307. doi:10.1038/s41594-019-0205-2. PMID   30936528. S2CID   89616808.
  89. Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, He A (October 2019). "CoBATCH for High-Throughput Single-Cell Epigenomic Profiling". Molecular Cell. 76 (1): 206–216.e7. doi: 10.1016/j.molcel.2019.07.015 . PMID   31471188.
  90. Luginbühl J, Kouno T, Nakano R, Chater TE, Sivaraman DM, Kishima M, et al. (April 5, 2019). "Decoding neuronal diversity by single-cell Convert-seq". bioRxiv: 600239. doi: 10.1101/600239 .
  91. 1 2 Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, Kohlway AS, et al. (August 2019). "Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility". Nature Biotechnology. 37 (8): 916–924. doi:10.1038/s41587-019-0147-6. PMC   10299900 . PMID   31235917. S2CID   195329871.
  92. Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, et al. (May 2019). "Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells". Nature Methods. 16 (5): 409–412. doi:10.1038/s41592-019-0392-0. PMC   6557128 . PMID   31011186.
  93. Zhu C, Gao Y, Peng J, Tang F, Yi C (January 1, 2019). "Single-Cell 5fC Sequencing". Single Cell Methods. Methods in Molecular Biology. Vol. 1979. Clifton, N.J. pp. 251–267. doi:10.1007/978-1-4939-9240-9_16. ISBN   978-1-4939-9239-3. PMID   31028643. S2CID   135447312.{{cite book}}: CS1 maint: location missing publisher (link)
  94. Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJ, Bloom JD (July 2019). "Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity". Journal of Virology. 93 (14). doi:10.1128/JVI.00500-19. PMC   6600203 . PMID   31068418.
  95. Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, Amit I (June 2019). "MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing". Nature Protocols. 14 (6): 1841–1862. doi:10.1038/s41596-019-0164-4. PMID   31101904. S2CID   156055842.
  96. Lee I, Razaghi R, Gilpatrick T, Molnar M, Sadowski N, Simpson JT, et al. (February 2, 2019). "Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing". bioRxiv: 504993. doi: 10.1101/504993 .
  97. Wang Y, Wang A, Liu Z, Thurman AL, Powers LS, Zou M, et al. (August 2019). "Single-molecule long-read sequencing reveals the chromatin basis of gene expression". Genome Research. 29 (8): 1329–1342. doi:10.1101/gr.251116.119. PMC   6673713 . PMID   31201211.
  98. Shipony Z, Marinov GK, Swaffer MP, Sinott-Armstrong NA, Skotheim JM, Kundaje A, et al. (December 22, 2018). "Long-range single-molecule mapping of chromatin accessibility in eukaryotes". bioRxiv. 17 (3): 319–327. doi: 10.1101/504662 . PMC   7968351 . PMID   32042188.
  99. Boersma S, Khuperkar D, Verhagen BM, Sonneveld S, Grimm JB, Lavis LD, Tanenbaum ME (July 2019). "Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding". Cell. 178 (2): 458–472.e19. doi:10.1016/j.cell.2019.05.001. PMC   6630898 . PMID   31178119.
  100. Specht H, Emmott E, Koller T, Slavov N (June 9, 2019). "High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity". bioRxiv: 665307. doi: 10.1101/665307 .
  101. Cao J, Zhou W, Steemers F, Trapnell C, Shendure J (June 11, 2019). "Characterizing the temporal dynamics of gene expression in single cells with sci-fate". bioRxiv: 666081. doi: 10.1101/666081 .
  102. Altemose N, Maslan A, Lai A, White JA, Streets AM (July 18, 2019). "μDamID: a microfluidic approach for imaging and sequencing protein-DNA interactions in single cells". bioRxiv: 706903. doi: 10.1101/706903 .
  103. Li G, Liu Y, Zhang Y, Kubo N, Yu M, Fang R, et al. (October 2019). "Joint profiling of DNA methylation and chromatin architecture in single cells". Nature Methods. 16 (10): 991–993. doi:10.1038/s41592-019-0502-z. PMC   6765429 . PMID   31384045.
  104. Singh M, Al-Eryani G, Carswell S, Ferguson JM, Blackburn J, Barton K, et al. (July 2019). "High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes". Nature Communications. 10 (1): 3120. Bibcode:2019NatCo..10.3120S. doi:10.1038/s41467-019-11049-4. PMC   6635368 . PMID   31311926.
  105. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, et al. (November 2019). "An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome". Nature Structural & Molecular Biology. 26 (11): 1063–1070. doi:10.1038/s41594-019-0323-x. PMC   7231560 . PMID   31695190.
  106. Cole C, Byrne A, Beaudin AE, Forsberg EC, Vollmers C (June 2018). "Tn5Prime, a Tn5 based 5' capture method for single cell RNA-seq". Nucleic Acids Research. 46 (10): e62. doi:10.1093/nar/gky182. PMC   6007450 . PMID   29548006.
  107. Schon MA, Kellner MJ, Plotnikova A, Hofmann F, Nodine MD (December 2018). "NanoPARE: parallel analysis of RNA 5' ends from low-input RNA". Genome Research. 28 (12): 1931–1942. doi:10.1101/gr.239202.118. PMC   6280765 . PMID   30355603.
  108. Uzbas F, Opperer F, Sönmezer C, Shaposhnikov D, Sass S, Krendl C, et al. (August 2019). "BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis". Genome Biology. 20 (1): 155. doi: 10.1186/s13059-019-1748-6 . PMC   6683345 . PMID   31387612.
  109. Rooijers K, Markodimitraki CM, Rang FJ, de Vries SS, Chialastri A, de Luca KL, et al. (July 2019). "Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells". Nature Biotechnology. 37 (7): 766–772. doi:10.1038/s41587-019-0150-y. PMC   6609448 . PMID   31209373.
  110. Ai S, Xiong H, Li CC, Luo Y, Shi Q, Liu Y, et al. (September 2019). "Profiling chromatin states using single-cell itChIP-seq". Nature Cell Biology. 21 (9): 1164–1172. doi:10.1038/s41556-019-0383-5. PMID   31481796. S2CID   201815293.
  111. Chen S, Lake BB, Zhang K (December 2019). "High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell". Nature Biotechnology. 37 (12): 1452–1457. doi:10.1038/s41587-019-0290-0. PMC   6893138 . PMID   31611697.
  112. Xing QR, Farran CE, Yi Y, Warrier T, Gautam P, Collins JJ, et al. (November 4, 2019). "Parallel Bimodal Single-cell Sequencing of Transcriptome and Chromatin Accessibility". bioRxiv. 30 (7): 1027–1039. doi: 10.1101/829960 . PMC   7397874 . PMID   32699019.
  113. Srivatsan SR, McFaline-Figueroa JL, Ramani V, Saunders L, Cao J, Packer J, et al. (December 2019). "Massively multiplex chemical transcriptomics at single cell resolution". Science. 367 (6473): 45–51. doi:10.1126/science.aax6234. PMC   7289078 . PMID   31806696.
  114. McFarland JM, Paolella BR, Warren A, Geiger-Schuller K, Shibue T, Rothberg M, et al. (December 8, 2019). "Multiplexed single-cell profiling of post-perturbation transcriptional responses to define cancer vulnerabilities and therapeutic mechanism of action". bioRxiv: 868752. doi: 10.1101/868752 .
  115. Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, et al. (December 11, 2019). "Microbial single-cell RNA sequencing by split-pool barcoding". bioRxiv: 869248. doi: 10.1101/869248 .
  116. Liu Y, Nie H, Liu H, Lu F (November 2019). "Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails". Nature Communications. 10 (1): 5292. Bibcode:2019NatCo..10.5292L. doi:10.1038/s41467-019-13228-9. PMC   6876564 . PMID   31757970.
  117. Amamoto R, Zuccaro E, Curry NC, Khurana S, Chen HH, Cepko CL, Arlotta P (November 2019). "FIN-Seq: transcriptional profiling of specific cell types from frozen archived tissue of the human central nervous system". Nucleic Acids Research. 48 (1): e4. doi: 10.1093/nar/gkz968 . PMC   7145626 . PMID   31728515.
  118. Setliff I, Shiakolas AR, Pilewski KA, Murji AA, Mapengo RE, Janowska K, et al. (December 2019). "High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity". Cell. 179 (7): 1636–1646.e15. doi:10.1016/j.cell.2019.11.003. PMC   7158953 . PMID   31787378.
  119. Datlinger P, Rendeiro AF, Boenke T, Krausgruber T, Barreca D, Bock C (December 18, 2019). "Ultra-high throughput single-cell RNA sequencing by combinatorial fluidic indexing". bioRxiv: 2019.12.17.879304. doi: 10.1101/2019.12.17.879304 .
  120. Derks, Jason; Leduc, Andrew; Wallmann, Georg; Huffman, R. Gray; Willetts, Matthew; Khan, Saad; Specht, Harrison; Ralser, Markus; Demichev, Vadim; Slavov, Nikolai (2022-07-14). "Increasing the throughput of sensitive proteomics by plexDIA". Nature Biotechnology. 41 (1): 50–59. doi:10.1038/s41587-022-01389-w. ISSN   1546-1696. PMC   9839897 . PMID   35835881.
  121. Karlsson, Filip; Kallas, Tomasz; Thiagarajan, Divya; Karlsson, Max; Schweitzer, Maud; Fernandez Navarro, Jose; Leijonancker, Louise; Geny, Sylvain; Pettersson, Erik; Rhomberg-Kauert, Jan; Gonzalez Granillo, Marcela; Bunz, Jessica; Dahlberg, Johan; Simonetti, Michele; Sathe, Prajakta; Brodin, Petter; Martinez Barrio, Alvaro; Fredriksson, Simon (2023-06-08). "Molecular Pixelation: Single cell spatial proteomics by sequencing". bioRxiv. doi:10.1101/2023.06.05.543770. S2CID   259127075.