This is a list of things named after Issai Schur .
In algebra, a division ring, also called a skew field, is a ring in which division is possible. Specifically, it is a nonzero ring in which every nonzero element a has a multiplicative inverse, that is, an element generally denoted a–1, such that a a–1 = a–1 a = 1. So, division may be defined as a / b = a b–1, but this notation is generally avoided, as one may have a b–1 ≠ b–1 a.
In mathematics, informal logic and argument mapping, a lemma is a generally minor, proven proposition which is used as a stepping stone to a larger result. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem". In many cases, a lemma derives its importance from the theorem it aims to prove, however, a lemma can also turn out to be more important than originally thought. The word "lemma" derives from the Ancient Greek λῆμμα.
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N and φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which is due to Jacques Dixmier.
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients. In symbols, a perfect group is one such that G(1) = G, or equivalently one such that Gab = {1}.
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis.
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group of a group G. It was introduced by Issai Schur (1904) in his work on projective representations.
In discrete mathematics, Schur's theorem is any of several theorems of the mathematician Issai Schur. In differential geometry, Schur's theorem is a theorem of Axel Schur. In functional analysis, Schur's theorem is often called Schur's property, also due to Issai Schur.
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
In mathematics, specifically group theory, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall (1928).
The Schur–Zassenhaus theorem is a theorem in group theory which states that if is a finite group, and is a normal subgroup whose order is coprime to the order of the quotient group , then is a semidirect product of and . An alternative statement of the theorem is that any normal Hall subgroup of a finite group has a complement in . Moreover if either or is solvable then the Schur–Zassenhaus theorem also states that all complements of in are conjugate. The assumption that either or is solvable can be dropped as it is always satisfied, but all known proofs of this require the use of the much harder Feit–Thompson theorem.
In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that
Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.
In Riemannian geometry, Schur's lemma is a result that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. The proof is essentially a one-step calculation, which has only one input: the second Bianchi identity.
At least three well-known results in mathematics bear the name Schur's lemma: