Locally catenative sequence

Last updated

In mathematics, a locally catenative sequence is a sequence of words in which each word can be constructed as the concatenation of previous words in the sequence. [1]

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Formally, an infinite sequence of words w(n) is locally catenative if, for some positive integers k and i1,...ik:

Some authors use a slightly different definition in which encodings of previous words are allowed in the concatenation. [2]

Examples

The sequence of Fibonacci words S(n) is locally catenative because

Fibonacci word infinite binary sequence generated by the Fibonacci recurrence with concatenation in place of addition

A Fibonacci word is a specific sequence of binary digits. The Fibonacci word is formed by repeated concatenation in the same way that the Fibonacci numbers are formed by repeated addition.

The sequence of Thue–Morse words T(n) is not locally catenative by the first definition. However, it is locally catenative by the second definition because

In mathematics, the Thue–Morse sequence, or Prouhet–Thue–Morse sequence, is the binary sequence obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus far. The first few steps of this procedure yield the strings 0 then 01, 0110, 01101001, 0110100110010110, and so on, which are prefixes of the Thue–Morse sequence. The full sequence begins:

where the encoding μ replaces 0 with 1 and 1 with 0.

Related Research Articles

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, finance, engineering, and other disciplines.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the convergence of monotonic sequences that are also bounded. Informally, the theorems state that if a sequence is increasing and bounded above by a supremum, then the sequence will converge to the supremum; in the same way, if a sequence is decreasing and is bounded below by an infimum, it will converge to the infimum.

In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.

In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.

In numerical analysis, the speed at which a convergent sequence approaches its limit is called the rate of convergence. Although strictly speaking, a limit does not give information about any finite first part of the sequence, the concept of rate of convergence is of practical importance when working with a sequence of successive approximations for an iterative method, as then typically fewer iterations are needed to yield a useful approximation if the rate of convergence is higher. This may even make the difference between needing ten or a million iterations.

In cryptography and the theory of computation, the next-bit test is a test against pseudo-random number generators. We say that a sequence of bits passes the next bit test for at any position in the sequence, if any attacker who knows the first bits cannot predict the st with reasonable computational power.

Sturmian word

In mathematics, a Sturmian word, named after Jacques Charles François Sturm, is a certain kind of infinitely long sequence of characters. Such a sequence can be generated by considering a game of English billiards on a square table. The struck ball will successively hit the vertical and horizontal edges labelled 0 and 1 generating a sequence of letters. This sequence is a Sturmian word.

A statistical language model is a probability distribution over sequences of words. Given such a sequence, say of length m, it assigns a probability to the whole sequence.

In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type.

In mathematical optimization, the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests necessary conditions for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied. Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. The system of equations and inequalities corresponding to the KKT conditions is usually not solved directly, except in the few special cases where a closed-form solution can be derived analytically. In general, many optimization algorithms can be interpreted as methods for numerically solving the KKT system of equations and inequalities.

In computability theory, course-of-values recursion is a technique for defining number-theoretic functions by recursion. In a definition of a function f by course-of-values recursion, the value of f(n+1) is computed from the sequence .

In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales. The definition used in measure theory is closely related to, but not identical to, the definition typically used in probability.

A locally testable code is a type of error-correcting code for which it can be determined if a string is a word in that code by looking at a small number of bits of the string. In some situations, it is useful to know if the data is corrupted without decoding all of it so that appropriate action can be taken in response. For example, in communication, if the receiver encounters a corrupted code, it can request the data be re-sent, which could increase the accuracy of said data. Similarly, in data storage, these codes can allow for damaged data to be recovered and rewritten properly.

Lebesgue integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the x-axis. The Lebesgue integral extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.

Disjunct and separable matrices play a pivotal role in the mathematical area of non-adaptive group testing. This area investigates efficient designs and procedures to identify 'needles in haystacks' by conducting the tests on groups of items instead of each item alone. The main concept is that if there are very few special items (needles) and the groups are constructed according to certain combinatorial guidelines, then one can test the groups and find all the needles. This can reduce the cost and the labor associated with large scale experiments.

For certain applications in linear algebra, it is useful to know properties of the probability distribution of the largest eigenvalue of a finite sum of random matrices. Suppose is a finite sequence of random matrices. Analogous to the well-known Chernoff bound for sums of scalars, a bound on the following is sought for a given parameter t:

In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation is the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman who showed that when the utilisation parameter of an M/M/1 queue is near 1 a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by german mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jaiger and Schtitte.

References

  1. Rozenberg, Grzegorz; Salomaa, Arto (1997). Handbook of Formal Languages. Springer. p. 262. ISBN   3-540-60420-0.
  2. Allouche, Jean-Paul; Shallit, Jeffrey (2003). Automatic Sequences. Cambridge. p. 237. ISBN   0-521-82332-3.