Loewe additivity

Last updated

In toxicodynamics and pharmacodynamics, Loewe additivity (or dose additivity) is one of several common reference models used for measuring the effects of drug combinations. [1] [2] [3]

Contents

Definition

Let and be doses of compounds 1 and 2 producing in combination an effect . We denote by and the doses of compounds 1 and 2 required to produce effect alone (assuming this conditions uniquely define them, i.e. that the individual dose-response functions are bijective). quantifies the potency of compound 1 relatively to that of compound 2.

can be interpreted as the dose of compound 2 converted into the corresponding dose of compound 1 after accounting for difference in potency.

Loewe additivity is defined as the situation where or .

Geometrically, Loewe additivity is the situation where isoboles are segments joining the points and in the domain .

If we denote by , and the dose-response functions of compound 1, compound 2 and of the mixture respectively, then dose additivity holds when

Testing

The Loewe additivity equation provides a prediction of the dose combination eliciting a given effect. Departure from Loewe additivity can be assessed informally by comparing this prediction to observations. This approach is known in toxicology as the model deviation ratio (MDR). [4]

This approach can be rooted in a more formal statistical method with the derivation of approximate p-values with Monte Carlo simulation, as implemented in the R package MDR. [5] [ clarification needed ]

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

Synergy is an interaction or cooperation giving rise to a whole that is greater than the simple sum of its parts. The term synergy comes from the Attic Greek word συνεργία synergia from synergos, συνεργός, meaning "working together". Synergy is similar in concept to emergence.

<span class="mw-page-title-main">Vapor pressure</span> Pressure exerted by a vapor in thermodynamic equilibrium

Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

<span class="mw-page-title-main">Heritability</span> Estimation of effect of genetic variation on phenotypic variation of a trait

Heritability is a statistic used in the fields of breeding and genetics that estimates the degree of variation in a phenotypic trait in a population that is due to genetic variation between individuals in that population. The concept of heritability can be expressed in the form of the following question: "What is the proportion of the variation in a given trait within a population that is not explained by the environment or random chance?"

<span class="mw-page-title-main">Covariance and contravariance of vectors</span> Vector behavior under coordinate changes

In physics, especially in multilinear algebra and tensor analysis, covariance and contravariance describe how the quantitative description of certain geometric or physical entities changes with a change of basis. Briefly, a contravariant vector is a list of numbers that transforms oppositely to a change of basis, and a covariant vector is a list of numbers that transforms in the same way. Contravariant vectors are often just called vectors and covariant vectors are called covectors or dual vectors. The terms covariant and contravariant were introduced by James Joseph Sylvester in 1851.

<span class="mw-page-title-main">Pharmacodynamics</span> Branch of pharmacology

Pharmacodynamics (PD) is the study of the biochemical and physiologic effects of drugs. The effects can include those manifested within animals, microorganisms, or combinations of organisms.

IC<sub>50</sub> Half maximal inhibitory concentration

Half maximal inhibitory concentration (IC50) is a measure of the potency of a substance in inhibiting a specific biological or biochemical function. IC50 is a quantitative measure that indicates how much of a particular inhibitory substance (e.g. drug) is needed to inhibit, in vitro, a given biological process or biological component by 50%. The biological component could be an enzyme, cell, cell receptor or microbe. IC50 values are typically expressed as molar concentration.

<span class="mw-page-title-main">Thermodynamic beta</span> Measure of the coldness of a system

In statistical thermodynamics, thermodynamic beta, also known as coldness, is the reciprocal of the thermodynamic temperature of a system:.

<span class="mw-page-title-main">Einstein coefficients</span> Quantities describing probability of absorption or emission of light

In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.

EC<sub>50</sub> Concentration of a compound where 50% of its maximal effect is observed

Half maximal effective concentration (EC50) is a measure of the concentration of a drug, antibody or toxicant which induces a biological response halfway between the baseline and maximum after a specified exposure time. More simply, EC50 can be defined as the concentration required to obtain a 50% [...] effect and may be also written as [A]50. It is commonly used as a measure of a drug's potency, although the use of EC50 is preferred over that of 'potency', which has been criticised for its vagueness. EC50 is a measure of concentration, expressed in molar units (M), where 1 M is equivalent to 1 mol/L.

<span class="mw-page-title-main">Dose–response relationship</span> Measure of organism response to stimulus

The dose–response relationship, or exposure–response relationship, describes the magnitude of the response of an organism, as a function of exposure to a stimulus or stressor after a certain exposure time. Dose–response relationships can be described by dose–response curves. This is explained further in the following sections. A stimulus response function or stimulus response curve is defined more broadly as the response from any type of stimulus, not limited to chemicals.

In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.

Toxic equivalency factor (TEF) expresses the toxicity of dioxins, furans and PCBs in terms of the most toxic form of dioxin, 2,3,7,8-TCDD. The toxicity of the individual congeners may vary by orders of magnitude.

In its most general form, the magnetoelectric effect (ME) denotes any coupling between the magnetic and the electric properties of a material. The first example of such an effect was described by Wilhelm Röntgen in 1888, who found that a dielectric material moving through an electric field would become magnetized. A material where such a coupling is intrinsically present is called a magnetoelectric.

Ting-Chao Chou is a Chinese American theoretical biologist, pharmacologist, cancer researcher and inventor.

Antibiotic synergy is one of three responses possible when two or more antibiotics are used simultaneously to treat an infection. In the synergistic response, the applied antibiotics work together to produce an effect more potent than if each antibiotic were applied singly. Compare to the additive effect, where the potency of an antibiotic combination is roughly equal to the combined potencies of each antibiotic singly, and antagonistic effect, where the potency of the combination is less than the combined potencies of each antibiotic.

<span class="mw-page-title-main">Bioassay</span> Analytical method to determine potency and effect of a substance

A bioassay is an analytical method to determine the potency or effect of a substance by its effect on living animals or plants, or on living cells or tissues. A bioassay can be either quantal or quantitative, direct or indirect. If the measured response is binary, the assay is quantal; if not, it is quantitative.

<span class="mw-page-title-main">Up-and-down design</span> Statistical experiment designs

Up-and-down designs (UDDs) are a family of statistical experiment designs used in dose-finding experiments in science, engineering, and medical research. Dose-finding experiments have binary responses: each individual outcome can be described as one of two possible values, such as success vs. failure or toxic vs. non-toxic. Mathematically the binary responses are coded as 1 and 0. The goal of dose-finding experiments is to estimate the strength of treatment (i.e., the "dose") that would trigger the "1" response a pre-specified proportion of the time. This dose can be envisioned as a percentile of the distribution of response thresholds. An example where dose-finding is used is in an experiment to estimate the LD50 of some toxic chemical with respect to mice.

The Wells-Riley model is a simple model of the airborne transmission of infectious diseases, developed by William F. Wells and Richard L. Riley for tuberculosis and measles.

Additive effect in pharmacology describes the situation when the combining effects of two drugs equal the sum of the effects of the two drugs acting independently. The concept of additive effect is derived from the concept of synergy. It was introduced by the scientists in pharmacology and biochemistry fields in the process of understanding the synergistic interaction between drugs and chemicals over the century.

References

  1. Greco, W.R.; Bravo, G.; Parsons, J. (1995). "The Search for Synergy: A Critical Review from a Response Surface Perspective". Pharmacol. Rev. 47 (2): 331–385. PMID   7568331.
  2. Loewe, S. (1926). "Effect of combinations: mathematical basis of problem". Arch. Exp. Pathol. Pharmakol. 114: 313–326. doi:10.1007/BF01952257. S2CID   19783017.
  3. Tang, J.; Wennerberg, J.K.; Aittokallio, T. (2015). "What Is Synergy? The Saariselkä Agreement Revisited". Frontiers in Pharmacology. 6: 181. doi: 10.3389/fphar.2015.00181 . PMC   4555011 . PMID   26388771.
  4. Belden, J. B.; Gilliom, R.; Lydy, M.J. (2007). "How well can we predict the toxicity of pesticide mixtures to aquatic life?". Integr. Environ. Assess. Manag. 3 (3): 364–72. doi:10.1002/ieam.5630030307. PMID   17695109. S2CID   16438339.
  5. "Github development repository for the R package MDR". GitHub . 2020-01-20.