Logarithmic pair

Last updated

In algebraic geometry, a logarithmic pair consists of a variety, together with a divisor along which one allows mild logarithmic singularities. They were studied by Iitaka (1976).

Definition

A boundary Q-divisor on a variety is a Q-divisor D of the form ΣdiDi where the Di are the distinct irreducible components of D and all coefficients are rational numbers with 0≤di≤1.

A logarithmic pair, or log pair for short, is a pair (X,D) consisting of a normal variety X and a boundary Q-divisor D.

The log canonical divisor of a log pair (X,D) is K+D where K is the canonical divisor of X.

A logarithmic 1-form on a log pair (X,D) is allowed to have logarithmic singularities of the form d log(z) = dz/z along components of the divisor given locally by z=0.

Related Research Articles

<span class="mw-page-title-main">Hodge conjecture</span> Unsolved problem in geometry

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

In mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on .

In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne. In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

In mathematics, the pluricanonical ring of an algebraic variety V, or of a complex manifold, is the graded ring

In algebraic geometry, the Kodaira dimensionκ(X) measures the size of the canonical model of a projective variety X.

In mathematics, an elliptic surface is a surface that has an elliptic fibration, in other words a proper morphism with connected fibers to an algebraic curve such that almost all fibers are smooth curves of genus 1. This is equivalent to the generic fiber being a smooth curve of genus one. This follows from proper base change.

<span class="mw-page-title-main">Resolution of singularities</span>

In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, a non-singular variety W with a proper birational map WV. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic p it is an open problem in dimensions at least 4.

In algebraic geometry, flips and flops are codimension-2 surgery operations arising in the minimal model program, given by blowing up along a relative canonical ring. In dimension 3 flips are used to construct minimal models, and any two birationally equivalent minimal models are connected by a sequence of flops. It is conjectured that the same is true in higher dimensions.

In algebraic geometry, the Iitaka dimension of a line bundle L on an algebraic variety X is the dimension of the image of the rational map to projective space determined by L. This is 1 less than the dimension of the section ring of L

In mathematics, canonical singularities appear as singularities of the canonical model of a projective variety, and terminal singularities are special cases that appear as singularities of minimal models. They were introduced by Reid (1980). Terminal singularities are important in the minimal model program because smooth minimal models do not always exist, and thus one must allow certain singularities, namely the terminal singularities.

In commutative algebra, the multiplier ideal associated to a sheaf of ideals over a complex variety and a real number c consists (locally) of the functions h such that

This is a glossary of algebraic geometry.

In algebraic geometry, a log structure provides an abstract context to study semistable schemes, and in particular the notion of logarithmic differential form and the related Hodge-theoretic concepts. This idea has applications in the theory of moduli spaces, in deformation theory and Fontaine's p-adic Hodge theory, among others.

In algebraic geometry, given a pair (X, D) consisting of a normal variety X and a -divisorD on X (e.g., canonical divisor), the discrepancy of the pair (X, D) measures the degree of the singularity of the pair.

In algebraic geometry, a Gorenstein scheme is a locally Noetherian scheme whose local rings are all Gorenstein. The canonical line bundle is defined for any Gorenstein scheme over a field, and its properties are much the same as in the special case of smooth schemes.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

In mathematics, and in particular algebraic geometry, K-stability is an algebro-geometric stability condition for projective algebraic varieties and complex manifolds. K-stability is of particular importance for the case of Fano varieties, where it is the correct stability condition to allow the formation of moduli spaces, and where it precisely characterises the existence of Kähler–Einstein metrics.

In algebraic geometry, the Bogomolov–Sommese vanishing theorem is a result related to the Kodaira–Itaka dimension. It is named after Fedor Bogomolov and Andrew Sommese. Its statement has differing versions:

Bogomolov–Sommese vanishing theorem for snc pair: Let X be a projective manifold, D a simple normal crossing divisor and an invertible subsheaf. Then the Kodaira–Itaka dimension is not greater than p.

References