This article needs additional citations for verification .(February 2008) |
In parallel computing, loop scheduling is the problem of assigning proper iterations of parallelizable loops among n processors to achieve load balancing and maintain data locality with minimum dispatch overhead.
Typical loop scheduling methods are:
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption.
In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called vectors. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional SIMD or SWAR Arithmetic Units. Vector processors can greatly improve performance on certain workloads, notably numerical simulation and similar tasks. Vector processing techniques also operate in video-game console hardware and in graphics accelerators.
OpenMP is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior.
In computer science and particularly in compiler design, loop nest optimization (LNO) is an optimization technique that applies a set of loop transformations for the purpose of locality optimization or parallelization or another loop overhead reduction of the loop nests. One classical usage is to reduce memory access latency or the cache bandwidth necessary due to cache reuse for some common linear algebra algorithms.
In computer science, a topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. Precisely, a topological sort is a graph traversal in which each node v is visited only after all its dependencies are visited. A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. Topological sorting has many applications especially in ranking problems such as feedback arc set. Topological sorting is possible even when the DAG has disconnected components.
Cilk, Cilk++, Cilk Plus and OpenCilk are general-purpose programming languages designed for multithreaded parallel computing. They are based on the C and C++ programming languages, which they extend with constructs to express parallel loops and the fork–join idiom.
Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler. On modern processors, loop unrolling is often counterproductive, as the increased code size can cause more cache misses; cf. Duff's device.
In compiler theory, loop optimization is the process of increasing execution speed and reducing the overheads associated with loops. It plays an important role in improving cache performance and making effective use of parallel processing capabilities. Most execution time of a scientific program is spent on loops; as such, many compiler optimization techniques have been developed to make them faster.
Microthreads are functions that may run in parallel to gain increased performance in microprocessors. They provide an execution model that uses a few additional instructions in a conventional processor to break code down into fragments that execute simultaneously. Dependencies are managed by making registers in the microprocessors executing the code synchronising, so one microthread will wait for another to produce data.
Automatic parallelization, also auto parallelization, or autoparallelization refers to converting sequential code into multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a shared-memory multiprocessor (SMP) machine. Fully automatic parallelization of sequential programs is a challenge because it requires complex program analysis and the best approach may depend upon parameter values that are not known at compilation time.
Binary Modular Dataflow Machine (BMDFM) is software that enables running an application in parallel on shared memory symmetric multiprocessing (SMP) computers using the multiple processors to speed up the execution of single applications. BMDFM automatically identifies and exploits parallelism due to the static and mainly dynamic scheduling of the dataflow instruction sequences derived from the formerly sequential program.
In computer science, software pipelining is a technique used to optimize loops, in a manner that parallels hardware pipelining. Software pipelining is a type of out-of-order execution, except that the reordering is done by a compiler instead of the processor. Some computer architectures have explicit support for software pipelining, notably Intel's IA-64 architecture.
Data parallelism is parallelization across multiple processors in parallel computing environments. It focuses on distributing the data across different nodes, which operate on the data in parallel. It can be applied on regular data structures like arrays and matrices by working on each element in parallel. It contrasts to task parallelism as another form of parallelism.
The Sieve C++ Parallel Programming System is a C++ compiler and parallel runtime designed and released by Codeplay that aims to simplify the parallelization of code so that it may run efficiently on multi-processor or multi-core systems. It is an alternative to other well-known parallelisation methods such as OpenMP, the RapidMind Development Platform and Threading Building Blocks (TBB).
Loop-level parallelism is a form of parallelism in software programming that is concerned with extracting parallel tasks from loops. The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures. Where a sequential program will iterate over the data structure and operate on indices one at a time, a program exploiting loop-level parallelism will use multiple threads or processes which operate on some or all of the indices at the same time. Such parallelism provides a speedup to overall execution time of the program, typically in line with Amdahl's law.
Because matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors.
Software is said to exhibit scalable parallelism if it can make use of additional processors to solve larger problems, i.e. this term refers to software for which Gustafson's law holds. Consider a program whose execution time is dominated by one or more loops, each of that updates every element of an array --- for example, the following finite difference heat equation stencil calculation:
for t := 0 to T dofor i := 1 to N-1 do new(i) := * .25 // explicit forward-difference with R = 0.25 endfor i := 1 to N-1 do A(i) := new(i) endend
In computer science, a normalized loop, is a loop in which the loop variable starts at 0 and gets incremented by one at every iteration until the exit condition is met. Normalized loops are very important for compiler theory, loop dependence analysis as they simplify the data dependence analysis.
In cryptography, scrypt is a password-based key derivation function created by Colin Percival, originally for the Tarsnap online backup service. The algorithm was specifically designed to make it costly to perform large-scale custom hardware attacks by requiring large amounts of memory. In 2016, the scrypt algorithm was published by IETF as RFC 7914. A simplified version of scrypt is used as a proof-of-work scheme by a number of cryptocurrencies, first implemented by an anonymous programmer called ArtForz in Tenebrix and followed by Fairbrix and Litecoin soon after.
A central problem in algorithmic graph theory is the shortest path problem. Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this article two efficient algorithms solving this problem are introduced.