Lotschnittaxiom

Last updated

The Lotschnittaxiom (German for "axiom of the intersecting perpendiculars") is an axiom in the foundations of geometry, introduced and studied by Friedrich Bachmann. [1] It states:

Contents

Perpendiculars raised on each side of a right angle intersect.

Bachmann showed that, in the absence of the Archimedean axiom, it is strictly weaker than the rectangle axiom, which states that there is a rectangle, which in turn is strictly weaker than the Parallel Postulate, as shown by Max Dehn. [2] In the presence of the Archimedean axiom, the Lotschnittaxiom is equivalent with the Parallel Postulate.

Equivalent formulations

As shown by Bachmann, the Lotschnittaxiom is equivalent to the statement

Through any point inside a right angle there passes a line that intersects both sides of the angle.

It was shown in [3] that it is also equivalent to the statement

The altitude in an isosceles triangle with base angles of 45° is less than the base.

and in [4] that it is equivalent to the following axiom proposed by Lagrange: [5]


If the lines a and b are two intersecting lines that are parallel to a line g, then the reflection of a in b is also parallel to g.

As shown in, [6] the Lotschnittaxiom is also equivalent to the following statements, the first one due to A. Lippman, the second one due to Henri Lebesgue [7]


Given any circle, there exists a triangle containing that circle in its interior.

Given any convex quadrilateral, there exists a triangle containing that convex quadrilateral in its interior.

Three more equivalent formulations, all purely incidence-geometric, were proved in: [8]

Given three parallel lines, there is a line that intersects all three of them.

There exist lines a and b, such that any line intersects a or b.

If the lines a_1, a_2, and a_3 are pairwise parallel, then there is a permutation (i,j,k) of (1,2,3) such that any line g which intersects a_i and a_j also intersects a_k.

In Bachmann's geometry of line-reflections

Its role in Friedrich Bachmann's absolute geometry based on line-reflections, in the absence of order or free mobility (the theory of metric planes) was studied in [9] and in. [10]

Connection with the Parallel Postulate

As shown in, [3] the conjunction of the Lotschnittaxiom and of Aristotle's axiom is equivalent to the Parallel Postulate.

Related Research Articles

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

<span class="mw-page-title-main">Spherical geometry</span> Geometry of the surface of a sphere

Spherical geometry or spherics is the geometry of the two-dimensional surface of a sphere or the n-dimensional surface of higher dimensional spheres.

Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point. Because of this, the elliptic geometry described in this article is sometimes referred to as single elliptic geometry whereas spherical geometry is sometimes referred to as double elliptic geometry.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.

Synthetic geometry is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulate, and at present called axioms.

<span class="mw-page-title-main">Desargues's theorem</span> Two triangles are in perspective axially if and only if they are in perspective centrally

In projective geometry, Desargues's theorem, named after Girard Desargues, states:

In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines.

Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates. The term was introduced by János Bolyai in 1832. It is sometimes referred to as neutral geometry, as it is neutral with respect to the parallel postulate. The first four of Euclid's postulates are now considered insufficient as a basis of Euclidean geometry, so other systems are used instead.

<span class="mw-page-title-main">Sylvester–Gallai theorem</span> Existence of a line through two points

The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.

<span class="mw-page-title-main">Euler's theorem in geometry</span> On distance between centers of a triangle

In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by

In geometry, Max Dehn introduced two examples of planes, a semi-Euclidean geometry and a non-Legendrian geometry, that have infinitely many lines parallel to a given one that pass through a given point, but where the sum of the angles of a triangle is at least π. A similar phenomenon occurs in hyperbolic geometry, except that the sum of the angles of a triangle is less than π. Dehn's examples use a non-Archimedean field, so that the Archimedean axiom is violated. They were introduced by Max Dehn (1900) and discussed by Hilbert.

<span class="mw-page-title-main">Sum of angles of a triangle</span> Fundamental result in geometry

In a Euclidean space, the sum of angles of a triangle equals the straight angle . A triangle has three angles, one at each vertex, bounded by a pair of adjacent sides.

In geometry, Pasch's axiom is a statement in plane geometry, used implicitly by Euclid, which cannot be derived from the postulates as Euclid gave them. Its essential role was discovered by Moritz Pasch in 1882.

<span class="mw-page-title-main">Transversal (geometry)</span> Line intersecting 2 coplanar lines at 2 points

In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.

Ordered geometry is a form of geometry featuring the concept of intermediacy but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry.

Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry which come into play.

<span class="mw-page-title-main">Parallel postulate</span> Geometric axiom

In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:

If a line segment intersects two straight lines forming two interior angles on the same side that are less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.

<span class="mw-page-title-main">Playfair's axiom</span> Modern formulation of Euclids parallel postulate

In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid :

In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.

Aristotle's axiom is an axiom in the foundations of geometry, proposed by Aristotle in On the Heavens that states:

References

  1. Bachmann, Friedrich (1964), "Zur Parallelenfrage", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 27 (3–4): 173–192, doi:10.1007/BF02993215, S2CID   186240918 .
  2. Dehn, Max (1900), "Die Legendre'schen Sätze über die Winkelsumme im Dreieck", Mathematische Annalen, 53 (3): 404–439, doi:10.1007/BF01448980, S2CID   122651688
  3. 1 2 Pambuccian, Victor (1994), "Zum Stufenaufbau des Parallelenaxioms", Journal of Geometry, 51 (1–2): 79–88, doi:10.1007/BF01226859, hdl: 2027.42/43033 , S2CID   28056805
  4. Pambuccian, Victor (2009), "On the equivalence of Lagrange's axiom to the Lotschnittaxiom", Journal of Geometry, 95 (1–2): 165–171, doi:10.1007/s00022-009-0018-2, S2CID   121123017
  5. Grabiner, Judith V. (2009), "Why did Lagrange "prove" the parallel postulate?" (PDF), American Mathematical Monthly, 116: 3–18
  6. Pambuccian, Victor; Schacht, Celia (2019), "Lippmann's axiom and Lebesgue's axiom are equivalent to the Lotschnittaxiom", Beiträge zur Algebra und Geometrie, 60 (4): 733–748, doi:10.1007/s13366-019-00445-y, S2CID   149747562
  7. Lebesgue, Henri (1936), "Sur le postulatum d'Euclide", Bulletin International de l'Académie Yougoslave des Sciences et des Beaux-Arts, 29/30: 42–43
  8. Pambuccian, Victor; Schacht, Celia (2021), "The ubiquitous axiom", Results in Mathematics, 76 (3): 1–39, doi:10.1007/s00025-021-01424-3, S2CID   236236967
  9. Dress, Andreas (1966), "Lotschnittebenen. Ein Beitrag zum Problem der algebraischen Beschreibung metrischer Ebenen", Journal für die Reine und Angewandte Mathematik, 1966 (224): 90–112, doi:10.1515/crll.1966.224.90, S2CID   118080739
  10. Dress, Andreas (1965), "Lotschnittebenen mit halbierbarem rechtem Winkel", Archiv für Mathematik, 16: 388–392, doi:10.1007/BF01220047, S2CID   122588823

Sources