Low-temperature thermal desalination

Last updated

Low-temperature thermal desalination (LTTD) is a desalination technique which takes advantage of the fact that water evaporates at lower temperatures at low pressures, even as low as ambient temperature. The system uses vacuum pumps to create a low pressure, low-temperature environment in which water evaporates even at a temperature gradient of 8 °C (14 °F) between two volumes of water. Cooling water is supplied from deep sea depths of as much as 600 metres (2,000 ft). This cold water is pumped through coils to condense the evaporated water vapor. The resulting condensate is purified water.

Contents

Using waste heat

The LTTD process may also take advantage of the temperature gradient available at thermal power plants, where large quantities of warm cooling water are discharged from the plant, reducing the energy input needed to create a temperature gradient. [1] This technique of making use of waste heat is a form of cogeneration.

History

The principle of LTTD has been known for some time, originally stemming from ocean thermal energy conversion research. Some experiments were conducted in the U.S. and Japan to test low-temperature-driven desalination technology. In Japan, a spray flash evaporation system was developed by Saga University. [2] In the U.S. state of Hawai'i, the Natural Energy Laboratory of Hawaii Authority tested an open-cycle OTEC plant with cogeneration of fresh water and electric energy, using a temperature difference of 20 °C (36 °F) between surface water and water at a depth of around 500 metres (1,600 ft).[ citation needed ]

Research in India and pilot plants

LTTD was studied by India's National Institute of Ocean Technology (NIOT) from 2004. Their first LTTD plant was opened in 2005 at Kavaratti in the Lakshadweep islands. The plant's capacity is 100,000 litres (22,000 imp gal; 26,000 US gal)/day, at a capital cost of ₹50 million (€922,000). The plant uses deep sea water at a temperature of 7 to 15 °C (45 to 59 °F). [3] In 2007, NIOT opened an experimental floating LTTD plant off the coast of Chennai with a capacity of 1,000,000 litres (220,000 imp gal; 260,000 US gal)/day. A smaller plant was established in 2009 at the North Chennai Thermal Power Station (a coal-fired power plant) to test the concept using power plant cooling water. [1] [4] [5]

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Ocean thermal energy conversion</span> Extracting energy from the ocean

Ocean Thermal Energy Conversion (OTEC) uses the ocean thermal gradient between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity. OTEC can operate with a very high capacity factor and so can operate in base load mode.

<span class="mw-page-title-main">Desalination</span> Removal of salts from water

Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltwater is desalinated to produce water suitable for human consumption or irrigation. The by-product of the desalination process is brine. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water resources.

<span class="mw-page-title-main">Evaporative cooler</span> Device that cools air through the evaporation of water

An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.

<span class="mw-page-title-main">Cooling tower</span> Device which rejects waste heat to the atmosphere through the cooling of a water stream

A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.

<span class="mw-page-title-main">Cogeneration</span> Simultaneous generation of electricity and useful heat

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time.

<span class="mw-page-title-main">Solar still</span> Water distillation and purification system using solar energy

A solar still distills water with substances dissolved in it by using the heat of the Sun to evaporate water so that it may be cooled and collected, thereby purifying it. They are used in areas where drinking water is unavailable, so that clean water is obtained from dirty water or from plants by exposing them to sunlight.

<span class="mw-page-title-main">District heating</span> Centralized heat distribution system

District heating is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels or biomass, but heat-only boiler stations, geothermal heating, heat pumps and central solar heating are also used, as well as heat waste from factories and nuclear power electricity generation. District heating plants can provide higher efficiencies and better pollution control than localized boilers. According to some research, district heating with combined heat and power (CHPDH) is the cheapest method of cutting carbon emissions, and has one of the lowest carbon footprints of all fossil generation plants.

Multi-stage flash distillation (MSF) is a water desalination process that distills sea water by flashing a portion of the water into steam in multiple stages of what are essentially countercurrent heat exchangers. Current MSF facilities may have as many as 30 stages.

Deep ocean water (DOW) is the name for cold, salty water found deep below the surface of Earth's oceans. Ocean water differs in temperature and salinity. Warm surface water is generally saltier than the cooler deep or polar waters; in polar regions, the upper layers of ocean water are cold and fresh. Deep ocean water makes up about 90% of the volume of the oceans. Deep ocean water has a very uniform temperature, around 0-3 °C, and a salinity of about 3.5% or, as oceanographers state, 35 ppt.

Solar desalination is a desalination technique powered by solar energy. The two common methods are direct (thermal) and indirect (photovoltaic).

<span class="mw-page-title-main">Solar pond</span> Solar thermal energy

A solar pond is a pool of saltwater which collects and stores solar thermal energy. The saltwater naturally forms a vertical salinity gradient also known as a "halocline", in which low-salinity water floats on top of high-salinity water. The layers of salt solutions increase in concentration with depth. Below a certain depth, the solution has a uniformly high salt concentration.

<span class="mw-page-title-main">Absorption refrigerator</span> Heat-source powered

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. The system uses two coolants, the first of which performs evaporative cooling and is then absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. The principle can also be used to air-condition buildings using the waste heat from a gas turbine or water heater. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Unlike more common vapor-compression refrigeration systems, an absorption refrigerator has no moving parts.

<span class="mw-page-title-main">National Institute of Ocean Technology</span> Scientific organization in Tamil Nadu

The National Institute of Ocean Technology (NIOT) was established in November 1993 as an autonomous society under the Ministry of Earth Sciences in India. NIOT is managed by a Governing Council and is headed by a director. The institute is based in Chennai. The major aim of starting NIOT was to develop reliable indigenous technologies to solve various engineering problems associated with harvesting of non-living and living resources in India's exclusive economic zone, which is about two-thirds of the land area of India.

<span class="mw-page-title-main">Osmotic power</span> Energy available from the difference in the salt concentration between seawater and river water

Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water. Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO). Both processes rely on osmosis with membranes. The key waste product is brackish water. This byproduct is the result of natural forces that are being harnessed: the flow of fresh water into seas that are made up of salt water.

A solar-powered desalination unit produces potable water from saline water through direct or indirect methods of desalination powered by sunlight. Solar energy is the most promising renewable energy source due to its ability to drive the more popular thermal desalination systems directly through solar collectors and to drive physical and chemical desalination systems indirectly through photovoltaic cells.

A seawater greenhouse is a greenhouse structure that enables the growth of crops and the production of fresh water in arid regions which constitute about one third of the earth's land area. This in response to the global water scarcity and peak water and the salt-infecting soil. The system uses seawater and solar energy. It uses a similar structure to the pad-and-fan greenhouse, but with additional evaporators and condensers. The seawater is pumped into the greenhouse to create a cool and humid environment, the optimal conditions for the cultivation of temperate crops. The freshwater is produced in a condensed state created by the solar desalination principle, which removes salt and impurities. Finally, the remaining humidified air is expelled from the greenhouse and used to improve growing conditions for outdoor plants.

Multiple-effect distillation or multi-effect distillation (MED) is a distillation process often used for sea water desalination. It consists of multiple stages or "effects". In each stage the feed water is heated by steam in tubes, usually by spraying saline water onto them. Some of the water evaporates, and this steam flows into the tubes of the next stage (effect), heating and evaporating more water. Each stage essentially reuses the energy from the previous stage, with successively lower temperatures and pressures after each one. There are different configurations, such as forward-feed, backward-feed, etc. Additionally, between stages this steam uses some heat to preheat incoming saline water.

Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase to pass through the membrane's pores. The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.

The low-temperature distillation (LTD) technology is the first implementation of the direct spray distillation (DSD) process. The first large-scale units are now in operation for desalination. The process was first developed by scientists at the University of Applied Sciences in Switzerland, focusing on low-temperature distillation in vacuum conditions, from 2000 to 2005.

References

  1. 1 2 Sistla, Phanikumar V.S.; et al. "Low Temperature Thermal Desalination Plants" (PDF). International Society of Offshore and Polar Engineers. Archived from the original (PDF) on 4 October 2011. Retrieved 28 May 2015.
  2. Haruo Uehara and Tsutomu Nakaoka Development and Prospective of Ocean Thermal Energy Conversion and Spray Flash Evaporator Desalination Archived 2012-03-22 at the Wayback Machine
  3. Desalination: India opens world’s first low temperature thermal desalination plant – IRC International Water and Sanitation Centre Archived 2009-03-27 at the Wayback Machine . Irc.nl (2005-05-31). Retrieved on 2011-03-20.
  4. Floating plant, India Archived 2008-08-27 at the Wayback Machine . Headlinesindia.com (2007-04-18). Retrieved on 2011-05-29.
  5. Tamil Nadu / Chennai News : Low temperature thermal desalination plants mooted. The Hindu (2007-04-21). Retrieved on 2011-03-20.