M-System

Last updated
M-System engine with its cylinder head removed. Note the piston with the characteristic sphere-shaped combustion chamber. (4 VD 14,5/12-1 SRW) ZT 303 Motor.jpg
M-System engine with its cylinder head removed. Note the piston with the characteristic sphere-shaped combustion chamber. (4 VD 14,5/12-1 SRW)

The MAN M-System, also referred to as M-Process and M combustion process, is a direct injection system for Diesel engines. In M-System engines, the fuel is injected onto the walls of the combustion chamber that is solely located inside the piston, and shaped like a sphere. The M-System was rendered obsolete by modern fuel injection systems for Diesel engines. Due to its particularities, the M-System was only used for stationary applications and commercial vehicle engines, passenger car engines with this design have never been made. The letter M is an abbreviation for the German word Mittenkugelverfahren, [1] meaning centre sphere combustion process.

Contents

Operating principle

Schematic MAN-M-Verfahren.jpg
Schematic

Unlike regular Diesel engines, in which the fuel is injected as far away as possible from the combustion chamber walls to obtain better efficiency, in M-System engines, the fuel is injected onto the walls of the combustion chamber. The combustion chamber is located inside the piston bowl and shaped like a sphere. Usually, M-System engines have single-spray or twin-spray injectors. In combination with the relatively low injection pressure, this results in a fine fuel film on the combustion chamber walls. However, a small portion of the fuel is injected into the air to initiate combustion, which raises the temperature inside the cylinder. The elevated temperature then causes the fuel film to vaporise and combust. Regular Diesel engines mix air and fuel during injection by creating a high fuel velocity with high injection pressure. In M-System engines however, mixing air and fuel takes place after injection. Due to the low velocity of the fuel vaporising from the combustion chamber walls, the air velocity has to be great to achieve a high relative air-fuel velocity to aid mixing. Therefore, M-System engines have special whirl intake ports. [2]

The idea of this operating principle is creating an air-fuel mixture that is more homogeneous with a dispersion of air and fuel that is more even than in regular Diesel engines. Thus, M-System engines have relatively good air utilisation and can operate under heavy load without sooting. Due to the low amount of fuel that is mixed with air as ignition begins, the increase in pressure is fairly low, resulting in low combustion noise. [2]

M-System engines suffer from high heat-transfer and flow losses, resulting in reduced efficiency and therefore higher fuel consumption. Furthermore, the thermal loads of both piston and cylinder head are very high, making M-System engines not very suitable for turbocharging. Under medium load, M-System engines emit high levels of hydrocarbons. [2]

Multifuel operation

In M-System engines, the fuel is not exposed to heat during the injection phase, which not only allows using regular Diesel engine fuels, but also petroleum fractions with average boiling points reaching from 313 to 673 K as well as petrol with no more than 86  RON as fuels. [3]

A special iteration of the M-System, the FM-System, was designed to further improve the M-System's multifuel characteristics. FM is an abbreviation for the German word Fremdzündungsmittenkugelverfahren, meaning spark ignition centre sphere combustion process. FM-System engines feature spark ignition, but still keep characteristics that are typical of Diesel engines, such as internal mixture formation and quality torque control. Therefore, FM engines are neither Diesel, nor Otto engines; instead, they operate on a hybrid combustion process. Compared to regular M-System engines, the exhaust behaviour is better. [2] The spark plugs used for FM-System engines are located at the opposite side of the injection nozzle and usually have two parallel pin electrodes, or three mass electrodes. [4]

History

IFA W50, a lorry with an M-System engine IFA W50 DCB.jpg
IFA W50, a lorry with an M-System engine

German engineer Kurt Blume is said to have had the idea of the M-System in 1940. In 1941, he first brought his idea to paper. [3] After World War II, J. Siegfried Meurer, then an MAN engineer, continued development of the M-System and prepared it for series production. [5] Meurer obtained a patent (DBP 865683) on the M-System in 1951. [6] First prototype M-System engines ran on the test bench in 1954 and 1955. [7] East German manufacturer IFA acquired a licence for the M-System and built the 4 VD 14,5/12-1 SRW Diesel engine starting from 1967, which is the engine with the highest production number featuring the M-System. [8] In the mid 1960s, J. Böttger claimed that MAN M-engines did not operate on the principle described in Meurer's patent (DBP 865683), which resulted in a patent lawsuit. [9] FM-System engines have been used from the late-1960s to the mid-1980s. [4]

Related Research Articles

<span class="mw-page-title-main">Compression ratio</span> Ratio of the volume of a combustion chamber from its largest capacity to its smallest capacity

The compression ratio is the ratio between the volume of the cylinder and combustion chamber in an internal combustion engine at their maximum and minimum values.

<span class="mw-page-title-main">Diesel engine</span> Type of internal combustion engine

The diesel engine, named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression; thus, the diesel engine is a so-called compression-ignition engine. This contrasts with engines using spark plug-ignition of the air-fuel mixture, such as a petrol engine or a gas engine.

<span class="mw-page-title-main">Fuel injection</span> Feature of internal combustion engines

Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of an injector. This article focuses on fuel injection in reciprocating piston and Wankel rotary engines.

<span class="mw-page-title-main">Diesel fuel</span> Liquid fuel used in diesel engines

Diesel fuel, also called diesel oil, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place without a spark as a result of compression of the inlet air and then injection of fuel. Therefore, diesel fuel needs good compression ignition characteristics.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

In spark ignition internal combustion engines, knocking occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front. The fuel-air charge is meant to be ignited by the spark plug only, and at a precise point in the piston's stroke. Knock occurs when the peak of the combustion process no longer occurs at the optimum moment for the four-stroke cycle. The shock wave creates the characteristic metallic "pinging" sound, and cylinder pressure increases dramatically. Effects of engine knocking range from inconsequential to completely destructive.

A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process.

Indirect injection in an internal combustion engine is fuel injection where fuel is not directly injected into the combustion chamber.

<span class="mw-page-title-main">Gasoline direct injection</span> Mixture formation system

Gasoline direct injection (GDI), also known as petrol direct injection (PDI), is a mixture formation system for internal combustion engines that run on gasoline (petrol), where fuel is injected into the combustion chamber. This is distinct from manifold fuel injection systems, which inject fuel into the intake manifold.

Homogeneous Charge Compression Ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction releases energy that can be transformed in an engine into work and heat.

<span class="mw-page-title-main">Bourke engine</span> Type of internal combustion engine

The Bourke engine was an attempt by Russell Bourke, in the 1920s, to improve the two-stroke internal combustion engine. Despite finishing his design and building several working engines, the onset of World War II, lack of test results, and the poor health of his wife compounded to prevent his engine from ever coming successfully to market. The main claimed virtues of the design are that it has only two moving parts, is lightweight, has two power pulses per revolution, and does not need oil mixed into the fuel.

<span class="mw-page-title-main">Hot-bulb engine</span> Internal combustion engine

The hot-bulb engine is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

<span class="mw-page-title-main">Glowplug</span> Heating element used to aid in starting diesel engines

A glowplug is a heating device used to aid in starting diesel engines. In cold weather, high-speed diesel engines can be difficult to start because the mass of the cylinder block and cylinder head absorb the heat of compression, preventing ignition. Pre-chambered engines use small glowplugs inside the pre-chambers. Direct-injected engines have these glowplugs in the combustion chamber.

Diesel engine runaway is a rare condition affecting diesel engines, in which the engine draws extra fuel from an unintended source and overspeeds at higher and higher RPM, producing up to ten times the engine's rated output until destroyed by mechanical failure or bearing seizure due to a lack of lubrication. Hot-bulb engines and jet engines can also run away via the same process.

<span class="mw-page-title-main">Hornsby-Akroyd oil engine</span>

The Hornsby-Akroyd oil engine, named after its inventor Herbert Akroyd Stuart and the manufacturer Richard Hornsby & Sons, was the first successful design of an internal combustion engine using heavy oil as a fuel. It was the first to use a separate vapourising combustion chamber and is the forerunner of all hot-bulb engines, which are considered predecessors of the similar Diesel engine, developed a few years later.

<span class="mw-page-title-main">Two-stroke diesel engine</span> Engine type

A two-stroke diesel engine is an internal combustion engine that uses compression ignition, with a two-stroke combustion cycle. It was invented by Hugo Güldner in 1899.

<span class="mw-page-title-main">Air-blast injection</span>

Air-blast injection is a historical direct injection system for Diesel engines. Unlike modern designs, air-blast injected Diesel engines do not have an injection pump. A simple low-pressure fuel-feed-pump is used instead to supply the injection nozzle with fuel. At injection, a blast of compressed air presses the fuel into the combustion chamber, hence the name air-blast injection. The compressed air comes from compressed-air tanks which feed the injection nozzle. A large crankshaft-driven compressor is used to re-fill these tanks; the size of the compressor and the low rotational frequency of the engine's crankshaft means that air-blast injected Diesel engines are huge in size and mass, this, combined with the problem that air-blast injection does not allow for quick load alteration makes it only suitable for stationary applications and watercraft. Before the invention of precombustion chamber injection, air-blast injection was the only way a properly working internal air fuel mixture system could be built, required for a Diesel engine. During the 1920s, air-blast injection was rendered obsolete by superior injection system designs that allowed much smaller but more powerful engines. Rudolf Diesel was granted a patent on air-blast injection in November 1893.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. This replaced the external combustion engine for applications where the weight or size of an engine was more important.

<span class="mw-page-title-main">MAN 630</span> Motor vehicle

The MAN 630 is a five-tonne lorry, made by German manufacturer Maschinenfabrik Augsburg Nürnberg, from 1953 until 1972. It was made in three major variants, the civilian L1, the military L2, and the civilian L3 with L being an abbreviation for the German word for Lorry, Lastkraftwagen. The military L2 versions were by far the most common MAN 630s. The German Bundeswehr purchased approximately 30,000 units of the L2, and used it as their standard lorry alongside the similar five-tonne Mercedes-Benz LG 315.

Friedrich Sass was a German engineer, university professor and historian.

References

  1. Olaf von Fersen (ed.): Ein Jahrhundert Automobiltechnik: Personenwagen, Springer, Düsseldorf 1986, ISBN   978-3-642-95773-4. p. 279
  2. 1 2 3 4 Richard van Basshuysen, Fred Schäfer (ed.): Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven, 8th edition, Springer, Wiesbaden 2017. ISBN   978-3-658-10902-8. Chaptep 15.1, p. 761
  3. 1 2 Hans Christian Graf von Seherr-Thoß (auth.): Die Technik des MAN Nutzfahrzeugbaus in: Nutzfahrzeuge AG (ed.): Leistung und Weg: Zur Geschichte des MAN Nutzfahrzeugbaus, Springer, Berlin/Heidelberg 1991. ISBN   978-3-642-93490-2. p. 438
  4. 1 2 Richard van Basshuysen (ed.): Ottomotor mit Direkteinspritzung und Direkteinblasung: Ottokraftstoffe, Erdgas, Methan, Wasserstoff, 4th edition, Springer, Wiesbaden 2017. ISBN   9783658122157. p. 23–24
  5. Achim Gaier: Nutzfahrzeuge in der DDR, Band 2. 2nd edition, Schrader, Stuttgart 2002. ISBN   9783613872103. p. 100
  6. Hans Christian Graf von Seherr-Thoß (auth.): Die Technik des MAN Nutzfahrzeugbaus, in MAN Nutzfahrzeuge AG (ed.): Leistung und Weg: Zur Geschichte des MAN Nutzfahrzeugbaus, Springer, Berlin/Heidelberg 1991. ISBN   978-3-642-93490-2. p. 465.
  7. ATZ, Automobiltechnische Zeitschrift, Volume 75, 1973. p. 152
  8. Peter Kirchberg: Plaste, Blech und Planwirtschaft: die Geschichte des Automobilbaus in der DDR, 2nd edition, Nicolai, Berlin 2001. ISBN   978-3-87584-027-8. p. 757
  9. Kammer der Technik (ed.): Zum Patentstreit über das M.A.N.-M-Verfahren, in Kraftfahrzeugtechnik, 05/1965, page 164