M33 (gene)

Last updated

M33 is a gene. [1] It is a mammalian homologue of Drosophila Polycomb. [1] It localises to euchromatin within interphase nuclei, but it is enriched within the centromeric heterochromatin of metaphase chromosomes. [1] In mice, the official symbol of M33 gene styled Cbx2 and the official name chromobox 2 are maintained by the MGI. Also known as pc; MOD2. In human ortholog CBX2, synonyms CDCA6, M33, SRXY5 from orthology source HGNC. M33 was isolated by means of the structural similarity of its chromodomain. [2] It contains a region of homology shared by Xenopus and Drosophila in the fifth exon. [3] Polycomb genes in Drosophila mediate changes in higher-order chromatin structure to maintain the repressed state of developmentally regulated genes . [4] [5] It may also involved in the campomelic syndrome and neoplastic disorders linked to allele loss in this region. [6] Disruption of the murine M33 gene, displayed posterior transformation of the sternal ribs and vertebral columns . [7]

Contents

Gene location

The mouse M33 gene is located on the Chromosome 11, from base pair 119,022,962 to base pair 119,031,270 (Build GRCm38/mm10). Human homolog of M33, Chromobox homolog 2 (CBX2 ) is located on Chromosome 17, from base pair 79,777,188 to base pair 79,787,650(Build GRCh38.p2).

Location of the M33 gene on chromosome 11. Chromosome 11.png
Location of the M33 gene on chromosome 11.

Protein structure

This protein contains Chromo (CHRromatin Organization MOdifier) domain and nuclear localization signal motif. [8] The full-length M33 sequence encodes a 519 amino acid (aa) protein. [2]

Function and mechanism

The mouse Polycomb group (PcG) protein M33 maintains repressed states of developmentally important genes, including homeotic genes and forms nuclear complexes with other PcG members. e.g.BMI1. [9] It also direct and/or indirect controls the vicinity of Hox genes regulatory regions, which are the accessibility of retinoic acid response elements . [10] homeotic transformations of the axial skeleton, and growth retardation. [11] [12] Moreover, the deficient of M33 also possessed abnormally few nucleated cells in the thymus and spleen, due to the aberrant T-cell expansion. [13] In transiently transfected cells, M33 acts as a transcriptional repressor . Biochemical assays indicate that two murine proteins, Ring1A [14] and Ring1B [14] interact directly with the repressor domain of M33 and that Ring1A can also behave as a transcriptional repressor. [15]

Mutation

Katoh-Fukui et al. (1998) [5] [16]

Related Research Articles

Flamingo is a member of the adhesion-GPCR family of proteins. Flamingo has sequence homology to cadherins and G protein-coupled receptors (GPCR). Flamingo was originally identified as a Drosophila protein involved in planar cell polarity. Mammals have three flamingo homologs, CELSR1, CELSR2, CELSR3. In mice all three have distinct expression patterns in the brain.

Polycomb-group proteins are a family of protein complexes first discovered in fruit flies that can remodel chromatin such that epigenetic silencing of genes takes place. Polycomb-group proteins are well known for silencing Hox genes through modulation of chromatin structure during embryonic development in fruit flies. They derive their name from the fact that the first sign of a decrease in PcG function is often a homeotic transformation of posterior legs towards anterior legs, which have a characteristic comb-like set of bristles.

<span class="mw-page-title-main">CBX1</span> Protein-coding gene in the species Homo sapiens

Chromobox protein homolog 1 is a protein that in humans is encoded by the CBX1 gene.

<span class="mw-page-title-main">CBX3</span> Protein-coding gene in the species Homo sapiens

Chromobox protein homolog 3 is a protein that is encoded by the CBX3 gene in humans.

<span class="mw-page-title-main">BMI1</span> Human protein

Polycomb complex protein BMI-1 also known as polycomb group RING finger protein 4 (PCGF4) or RING finger protein 51 (RNF51) is a protein that in humans is encoded by the BMI1 gene. BMI1 is a polycomb ring finger oncogene.

<span class="mw-page-title-main">HES1</span> Protein-coding gene in the species Homo sapiens

Transcription factor HES1 is a protein that is encoded by the Hes1 gene, and is the mammalian homolog of the hairy gene in Drosophila. HES1 is one of the seven members of the Hes gene family (HES1-7). Hes genes code nuclear proteins that suppress transcription.

<span class="mw-page-title-main">RNF2</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase RING2 is an enzyme that in humans is encoded by the RNF2 gene.

<span class="mw-page-title-main">Polycomb protein EED</span> Protein-coding gene in the species Homo sapiens

Polycomb protein EED is a protein that in humans is encoded by the EED gene.

<span class="mw-page-title-main">PHC1</span> Protein-coding gene in the species Homo sapiens

Polyhomeotic-like protein 1 is a protein that in humans is encoded by the PHC1 gene.

<span class="mw-page-title-main">PCGF2</span> Protein-coding gene in the species Homo sapiens

Polycomb group RING finger protein 2, PCGF2, also known as MEL18 or RNF110, is a protein that in humans is encoded by the PCGF2 gene.

<span class="mw-page-title-main">EPC1</span> Protein-coding gene in the species Homo sapiens

Enhancer of polycomb homolog 1 is a protein that in humans is encoded by the EPC1 gene.

<span class="mw-page-title-main">PHC2</span> Protein-coding gene in the species Homo sapiens

Polyhomeotic-like protein 2 is a protein that in humans is encoded by the PHC2 gene.

<span class="mw-page-title-main">CBX5 (gene)</span> Protein-coding gene in humans

Chromobox protein homolog 5 is a protein that in humans is encoded by the CBX5 gene. It is a highly conserved, non-histone protein part of the heterochromatin family. The protein itself is more commonly called HP1α. Heterochromatin protein-1 (HP1) has an N-terminal domain that acts on methylated lysines residues leading to epigenetic repression. The C-terminal of this protein has a chromo shadow-domain (CSD) that is responsible for homodimerizing, as well as interacting with a variety of chromatin-associated, non-histone proteins.

<span class="mw-page-title-main">PCGF6</span> Protein-coding gene in the species Homo sapiens

Polycomb group RING finger protein 6 is a protein that in humans is encoded by the PCGF6 gene.

<span class="mw-page-title-main">JARID2</span> Protein-coding gene in the species Homo sapiens

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">CBX8</span> Protein-coding gene in the species Homo sapiens

Chromobox protein homolog 8 is a protein that in humans is encoded by the CBX8 gene.

<span class="mw-page-title-main">ASXL1</span> Protein-coding gene in the species Homo sapiens

Putative Polycomb group protein ASXL1 is a protein that in humans is encoded by the ASXL1 gene.

<span class="mw-page-title-main">CBX2 (gene)</span> Protein-coding gene in the species Homo sapiens

Chromobox protein homolog 2 is a protein that in humans is encoded by the CBX2 gene.

<span class="mw-page-title-main">PCGF1</span> Protein-coding gene in the species Homo sapiens

Polycomb group RING finger protein 1, PCGF1, also known as NSPC1 or RNF68 is a RING finger domain protein that in humans is encoded by the PCGF1 gene.

The gene Maelstrom, Mael, creates a protein, which was first located in Drosophila melanogaster in the nuage perinuclear structure and has functionality analogous to the spindle, spn, gene class. Its mammalian homolog is MAEL.

References

  1. 1 2 3 Wang G, Horsley D, Ma A, Otte AP, Hutchings A, Butcher GW, Singh PB (1997). "M33, a mammalian homologue of Drosophila Polycomb localises to euchromatin within interphase nuclei but is enriched within the centromeric heterochromatin of metaphase chromosomes". Cytogenetics and Cell Genetics. 78 (1): 50–5. doi:10.1159/000134626. PMID   9345907.
  2. 1 2 Pearce JJ, Singh PB, Gaunt SJ (April 1992). "The mouse has a Polycomb-like chromobox gene". Development. 114 (4): 921–9. doi:10.1242/dev.114.4.921. PMID   1352241.
  3. Reijnen, Marlene J.; Hamer, Karien M.; den Blaauwen, Jan L.; Lambrechts, Caro; Schoneveld, Ilse; van Driel, Roel; Otte, Arie P. (1995-09-01). "Polycomb and bmi-1 homologs are expressed in overlapping patterns in Xenopus embryos and are able to interact with each other". Mechanisms of Development. 53 (1): 35–46. doi: 10.1016/0925-4773(95)00422-X . PMID   8555110.
  4. Orlando V, Paro R (December 1993). "Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin". Cell. 75 (6): 1187–98. doi:10.1016/0092-8674(93)90328-n. PMID   7903220. S2CID   12569811.
  5. 1 2 Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T (June 1998). "Male-to-female sex reversal in M33 mutant mice". Nature. 393 (6686): 688–92. Bibcode:1998Natur.393..688K. doi:10.1038/31482. PMID   9641679. S2CID   4399183.
  6. "M33 (34): sc-136387" (PDF). Santa Cruz Biotechnology, Inc.
  7. Katoh-Fukui Y, Owaki A, Toyama Y, Kusaka M, Shinohara Y, Maekawa M, Toshimori K, Morohashi K (September 2005). "Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression". Blood. 106 (5): 1612–20. doi: 10.1182/blood-2004-08-3367 . PMID   15899914.
  8. Hirose S, Komoike Y, Higashinakagawa T (September 2006). "Identification of a nuclear localization signal in mouse polycomb protein, M33". Zoological Science. 23 (9): 785–91. doi:10.2108/zsj.23.785. PMID   17043400. S2CID   12948692.
  9. Hashimoto N, Brock HW, Nomura M, Kyba M, Hodgson J, Fujita Y, Takihara Y, Shimada K, Higashinakagawa T (April 1998). "RAE28, BMI1, and M33 are members of heterogeneous multimeric mammalian Polycomb group complexes". Biochemical and Biophysical Research Communications. 245 (2): 356–65. doi:10.1006/bbrc.1998.8438. PMID   9571155.
  10. Bel-Vialar S, Coré N, Terranova R, Goudot V, Boned A, Djabali M (August 2000). "Altered retinoic acid sensitivity and temporal expression of Hox genes in polycomb-M33-deficient mice". Developmental Biology. 224 (2): 238–49. doi: 10.1006/dbio.2000.9791 . PMID   10926763.
  11. Baumann C, De La Fuente R (2011-01-11). "Role of polycomb group protein cbx2/m33 in meiosis onset and maintenance of chromosome stability in the Mammalian germline". Genes. 2 (1): 59–80. doi: 10.3390/genes2010059 . PMC   3244348 . PMID   22200029.
  12. Ono M, Harley VR (February 2013). "Disorders of sex development: new genes, new concepts". Nature Reviews. Endocrinology. 9 (2): 79–91. doi:10.1038/nrendo.2012.235. PMID   23296159. S2CID   1041738.
  13. Coré N, Bel S, Gaunt SJ, Aurrand-Lions M, Pearce J, Fisher A, Djabali M (February 1997). "Altered cellular proliferation and mesoderm patterning in Polycomb-M33-deficient mice". Development. 124 (3): 721–9. doi:10.1242/dev.124.3.721. PMID   9043087.
  14. 1 2 Vidal M (2009-01-01). "Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression". The International Journal of Developmental Biology. 53 (2–3): 355–70. doi: 10.1387/ijdb.082690mv . hdl: 10261/56003 . PMID   19412891.
  15. Schoorlemmer J, Marcos-Gutiérrez C, Were F, Martínez R, García E, Satijn DP, Otte AP, Vidal M (October 1997). "Ring1A is a transcriptional repressor that interacts with the Polycomb-M33 protein and is expressed at rhombomere boundaries in the mouse hindbrain". The EMBO Journal. 16 (19): 5930–42. doi:10.1093/emboj/16.19.5930. PMC   1170224 . PMID   9312051.
  16. Biason-Lauber A, Konrad D, Meyer M, DeBeaufort C, Schoenle EJ (May 2009). "Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene". American Journal of Human Genetics. 84 (5): 658–63. doi:10.1016/j.ajhg.2009.03.016. PMC   2680992 . PMID   19361780.