MANTIS (space telescope)

Last updated
MANTIS (Monitoring Activity from Nearby Stars with UV Imaging and Spectroscopy)
Mission type Space telescope
Operator NASA
Start of mission
Launch date2026 (planned)
Orbital parameters
Reference system Geocentric
 

MANTIS (Monitoring Activity from Nearby Stars with UV Imaging and Spectroscopy) is a planned NASA space telescope. MANTIS will study the emission of ultraviolet (UV) radiation of stars, especially in the extreme UV range, to judge the habitability of planets orbiting them. The telescope will be built by the University of Colorado Boulder as a cubesat at a cost of $8.5 million. [1]

Ultraviolet radiation and stellar flares can impact the habitability of planets. For many stars, MANTIS will perform the first measurements of extreme UV emissions. [2]


Related Research Articles

<span class="mw-page-title-main">Space telescope</span> Instrument in space to study astronomical objects

A space telescope or space observatory is a telescope in outer space used to observe astronomical objects. Suggested by Lyman Spitzer in 1946, the first operational telescopes were the American Orbiting Astronomical Observatory, OAO-2 launched in 1968, and the Soviet Orion 1 ultraviolet telescope aboard space station Salyut 1 in 1971. Space telescopes avoid the filtering and distortion (scintillation) of electromagnetic radiation which they observe, and avoid light pollution which ground-based observatories encounter. They are divided into two types: Satellites which map the entire sky, and satellites which focus on selected astronomical objects or parts of the sky and beyond. Space telescopes are distinct from Earth imaging satellites, which point toward Earth for satellite imaging, applied for weather analysis, espionage, and other types of information gathering.

<span class="mw-page-title-main">Ultraviolet astronomy</span> Observation of electromagnetic radiation at ultraviolet wavelengths

Ultraviolet astronomy is the observation of electromagnetic radiation at ultraviolet wavelengths between approximately 10 and 320 nanometres; shorter wavelengths—higher energy photons—are studied by X-ray astronomy and gamma-ray astronomy. Ultraviolet light is not visible to the human eye. Most of the light at these wavelengths is absorbed by the Earth's atmosphere, so observations at these wavelengths must be performed from the upper atmosphere or from space.

<span class="mw-page-title-main">GALEX</span> NASA satellite of the Explorer program

Galaxy Evolution Explorer was a NASA orbiting space telescope designed to observe the universe in ultraviolet wavelengths to measure the history of star formation in the universe. In addition to paving the way for future ultraviolet missions, the space telescope allowed astronomers to uncover mysteries about the early universe and how it evolved, as well as better characterize phenomena like black holes and dark matter. The mission was extended three times over a period of 10 years before it was decommissioned in June 2013. GALEX was launched on 28 April 2003 and decommissioned in June 2013.

<span class="mw-page-title-main">STS-67</span> 1995 American crewed spaceflight

STS-67 was a human spaceflight mission using Space ShuttleEndeavour that launched from Kennedy Space Center, Florida on March 2, 1995.

<span class="mw-page-title-main">Array of Low Energy X-ray Imaging Sensors</span>

The Array of Low Energy X-ray Imaging Sensors X-ray telescope featured curved mirrors whose multilayer coatings reflected and focused low-energy X-rays or extreme ultraviolet (EUV) light the way optical telescopes focus visible light. The satellite and payloads were funded by the United States Department of Energy and built by Los Alamos National Laboratory (LANL) in collaboration with Sandia National Laboratories and the University of California-Space Sciences Lab. The satellite bus was built by AeroAstro, Inc. of Herndon, VA. The Launch was provided by the United States Air Force Space Test Program on a Pegasus Booster on April 25, 1993. The mission was entirely controlled from a small groundstation at LANL.

<span class="mw-page-title-main">K-type main-sequence star</span> Stellar classification

A K-type main-sequence star, also referred to as a K-type dwarfred dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars and yellow/white G-type main-sequence stars. They have masses between 0.6 and 0.9 times the mass of the Sun and surface temperatures between 3,900 and 5,300 K. These stars are of particular interest in the search for extraterrestrial life due to their stability and long lifespan. Well-known examples include Alpha Centauri B and Epsilon Indi.

<span class="mw-page-title-main">International Ultraviolet Explorer</span> Astronomical observatory satellite

International Ultraviolet Explorer, was the first space observatory primarily designed to take ultraviolet (UV) electromagnetic spectrum. The satellite was a collaborative project between NASA, the United Kingdom's Science and Engineering Research Council and the European Space Agency (ESA), formerly European Space Research Organisation (ESRO). The mission was first proposed in early 1964, by a group of scientists in the United Kingdom, and was launched on 26 January 1978 aboard a NASA Thor-Delta 2914 launch vehicle. The mission lifetime was initially set for 3 years, but in the end it lasted 18 years, with the satellite being shut down in 1996. The switch-off occurred for financial reasons, while the telescope was still functioning at near original efficiency.

Kosmos 215, also known as DS-U1-A No.1, was a Soviet satellite which was launched in 1968 as part of the Dnepropetrovsk Sputnik programme. It was a 385-kilogram (849 lb) spacecraft, which was built by the Yuzhnoye Design Bureau, and was used to study radiation and conduct optical observations of the atmosphere of the Earth. It was equipped with eight telescopes, including one for ultraviolet astronomy. It was primarily used to study the Sun, although several other X-ray emissions were detected.

<span class="mw-page-title-main">Habitability of K-type main-sequence star systems</span> Overview of the habitability of K-type main-sequence star systems

K-type main-sequence stars, also known as orange dwarfs, may be candidates for supporting extraterrestrial life. These stars are known as "Goldilocks stars" as they emit enough radiation in the non-UV ray spectrum to provide a temperature that allows liquid water to exist on the surface of a planet; they also remain stable in the main sequence longer than the Sun by burning their hydrogen slower, allowing more time for life to form on a planet around a K-type main-sequence star. The planet's habitable zone, ranging from 0.1–0.4 to 0.3–1.3 astronomical units (AU), depending on the size of the star, is often far enough from the star so as not to be tidally locked to the star, and to have a sufficiently low solar flare activity not to be lethal to life. In comparison, red dwarf stars have too much solar activity and quickly tidally lock the planets in their habitable zones, making them less suitable for life. The odds of complex life arising may be better on planets around K-type main-sequence stars than around Sun-like stars, given the suitable temperature and extra time available for it to evolve. Some planets around K-type main-sequence stars are potential candidates for extraterrestrial life.

<span class="mw-page-title-main">ULTRASAT</span>

ULTRASAT is a space telescope in a smallsat format with a large field of view, 210 square degrees, that will detect and monitor transient astronomical events in the near-ultraviolet (220–280 nm) spectral region. ULTRASAT will observe a large patch of sky, alternating every six months between the southern and northern hemisphere. The satellite will be launched into geosynchronous orbit in early 2026. All ULTRASAT data will be transmitted to the ground in real time. Upon detection of a transient event, ULTRASAT will provide alerts within 20 minutes to other ground-based and space telescopes to be directed to the source for further observation of the event in other wavelength bands.

The Carl Sagan Institute: Pale Blue Dot and Beyond was founded in 2014 at Cornell University in Ithaca, New York to further the search for habitable planets and moons in and outside the Solar System. It is focused on the characterization of exoplanets and the instruments to search for signs of life in the universe. The founder and current director of the institute is astronomer Lisa Kaltenegger.

<span class="mw-page-title-main">Large Ultraviolet Optical Infrared Surveyor</span> Proposed NASA space telescope

The Large Ultraviolet Optical Infrared Surveyor, commonly known as LUVOIR, is a multi-wavelength space telescope concept being developed by NASA under the leadership of a Science and Technology Definition Team. It is one of four large astrophysics space mission concepts studied in preparation for the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey.

<span class="mw-page-title-main">Habitable Exoplanet Imaging Mission</span> Proposed space observatory to characterize exoplanets atmospheres

The Habitable Exoplanet Observatory (HabEx) is a space telescope concept that would be optimized to search for and image Earth-size habitable exoplanets in the habitable zones of their stars, where liquid water can exist. HabEx would aim to understand how common terrestrial worlds beyond the Solar System may be and determine the range of their characteristics. It would be an optical, UV and infrared telescope that would also use spectrographs to study planetary atmospheres and eclipse starlight with either an internal coronagraph or an external starshade.

CubeSat UV Experiment (CUVE) is a space mission concept to study the atmospheric processes of the planet Venus with a small satellite. Specifically, the orbiter mission would study an enigmatic ultraviolet light absorber of unknown composition situated within the planet's uppermost cloud layer that absorbs about half the solar radiation downwelling in the planet's atmosphere.

<span class="mw-page-title-main">Kevin France</span>

Kevin France is an astrophysicist and assistant professor in the Department of Astrophysical and Planetary Sciences at the University of Colorado. His research focuses on exoplanets and their host stars, protoplanetary disks, and the development of instrumentation for space-borne astronomy missions.

<span class="mw-page-title-main">Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution</span>

The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission aims to find environments beyond Earth's solar system that might host planets with thick atmospheres to support life.

SPARCS is an American ultraviolet space nano-telescope in the CubeSat 6U format whose objective is to study the near and far ultraviolet radiation of stars of the M of our galaxy. The mission selected by NASA is developed and managed by Arizona State University with the participation of the Jet Propulsion Laboratory (JPL) which provides the telescope and its detectors.

<span class="mw-page-title-main">Habitability of yellow dwarf systems</span> Likelihood of finding extraterrestrial life in yellow dwarf systems

Habitability of yellow dwarf systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars.

<span class="mw-page-title-main">K2-18b</span> Mini-Neptune orbiting the red dwarf K2-18

K2-18b, also known as EPIC 201912552 b, is an exoplanet orbiting the red dwarf K2-18, located 124 light-years (38 pc) away from Earth. The planet, initially discovered with the Kepler space telescope, is about eight times the mass of Earth, and is thus classified as Mini-Neptune. It has a 33-day orbit within the star's habitable zone, meaning that it receives about a similar amount of starlight as the Earth receives from the Sun and could have similar conditions, which allow the existence of liquid water.

References

  1. "James Webb Space Telescope gets satellite sidekick to aid search for habitable planets". 16 June 2023.
  2. "New keen-sighted satellite will view distant stars, assist Webb telescope". 8 June 2023.