MClone

Last updated

MClone, [1] or Clonal Mosaic, is a pattern formation algorithm proposed in 1998 used specially for simulating the visible patches of color in the fur of giraffes and members of the Felidae of the mammalians. It was primarily proposed as a 2D model [2] and lately was extended to 3D. [3] An important feature of the algorithm is that it is biologically plausible.

Contents

Since the algorithm was created in order to address some of the problems with texture mapping, its main goal is to produce, with the same set of parameters, a variable number of color patterns for a 2D or 3D object model. This way, for a relatively big amount of different entities represented by the same model, instead of using the same texture (and, doing so, each object would be equal to the others), one could use the different color patterns created by the MClone algorithm. Another useful feature of MClone is that it can be used to create patterns along with growing data of the object model.

The algorithm

The MClone algorithm, essentially, works as follows: given the 3D model of the object which we want to create a new pattern, we first randomly place n cells on the model's surface. Each cell has a type, which defines many cell's properties, including its color. This way, for instance, if we want to simulate a pattern that has only two colors, we should use just two types of cells.

Now that the model has the defined cells, and they are placed randomly, we want them to create a pattern. For this to happen, we make relaxations between all cells. We have two fundamental parameters in these relaxations: the mitosis rate of each cell type (which indicates the delay in days for the cell type multiplication) and the adhesion rate of each cell type to the others (and to itself too). This last one is a number smaller than 1 that subtracts from the resultant force of the relaxation (thus, keeping the cells together).

Each relaxation happens has a defined "day" in which it occurs (this is the way MClone calls the relaxation process). The number of relaxations per day is defined at the beginning of the algorithm. The mitosis rate is defined as a number that indicates in how many days a cell is going to reproduce "again". For example, if the mitosis rate of a given cell type is 4, the cells of that cell type are going to reproduce themselves in average every 4 days (i.e., for a cell born in the first day, it reproduces itself in the fifth day, and in the ninth day, and so on).

Passed a given number of days, we are going to have a well defined pattern, which can be, or not be what we were waiting for. Although it could not seem intuitive through the explanation above, an important feature of the algorithm is that it is easy to predict how it will become a pattern just after taking a look at the parameters passed to the algorithm.

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, texture, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

<span class="mw-page-title-main">Cellular automaton</span> Discrete model studied in computer science

A cellular automaton is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling.

<span class="mw-page-title-main">Halftone</span> Printing process

Halftone is the reprographic technique that simulates continuous-tone imagery through the use of dots, varying either in size or in spacing, thus generating a gradient-like effect. "Halftone" can also be used to refer specifically to the image that is produced by this process.

<span class="mw-page-title-main">Particle system</span> Technique in game physics, motion graphics and computer graphics

A particle system is a technique in game physics, motion graphics, and computer graphics that uses many minute sprites, 3D models, or other graphic objects to simulate certain kinds of "fuzzy" phenomena, which are otherwise very hard to reproduce with conventional rendering techniques – usually highly chaotic systems, natural phenomena, or processes caused by chemical reactions.

The Hough transform is a feature extraction technique used in image analysis, computer vision, and digital image processing. The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure. This voting procedure is carried out in a parameter space, from which object candidates are obtained as local maxima in a so-called accumulator space that is explicitly constructed by the algorithm for computing the Hough transform.

<span class="mw-page-title-main">Solid modeling</span> Set of principles for modeling solid geometry

Solid modeling is a consistent set of principles for mathematical and computer modeling of three-dimensional shapes (solids). Solid modeling is distinguished within the broader related areas of geometric modeling and computer graphics, such as 3D modeling, by its emphasis on physical fidelity. Together, the principles of geometric and solid modeling form the foundation of 3D-computer-aided design and in general support the creation, exchange, visualization, animation, interrogation, and annotation of digital models of physical objects.

<span class="mw-page-title-main">Cell growth</span> Increase in the total cell mass

Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis is greater than the overall rate of cellular degradation.

<span class="mw-page-title-main">Cluster analysis</span> Grouping a set of objects by similarity

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning.

<span class="mw-page-title-main">Diffusion-limited aggregation</span>

Diffusion-limited aggregation (DLA) is the process whereby particles undergoing a random walk due to Brownian motion cluster together to form aggregates of such particles. This theory, proposed by T.A. Witten Jr. and L.M. Sander in 1981, is applicable to aggregation in any system where diffusion is the primary means of transport in the system. DLA can be observed in many systems such as electrodeposition, Hele-Shaw flow, mineral deposits, and dielectric breakdown.

In visual effects, match moving is a technique that allows the insertion of 2D elements, other live action elements or CG computer graphics into live-action footage with correct position, scale, orientation, and motion relative to the photographed objects in the shot. It also allows for the removal of live action elements from the live action shot. The term is used loosely to describe several different methods of extracting camera motion information from a motion picture. Sometimes referred to as motion tracking or camera solving, match moving is related to rotoscoping and photogrammetry. Match moving is sometimes confused with motion capture, which records the motion of objects, often human actors, rather than the camera. Typically, motion capture requires special cameras and sensors and a controlled environment. Match moving is also distinct from motion control photography, which uses mechanical hardware to execute multiple identical camera moves. Match moving, by contrast, is typically a software-based technology, applied after the fact to normal footage recorded in uncontrolled environments with an ordinary camera.

<span class="mw-page-title-main">Lloyd's algorithm</span>

In electrical engineering and computer science, Lloyd's algorithm, also known as Voronoi iteration or relaxation, is an algorithm named after Stuart P. Lloyd for finding evenly spaced sets of points in subsets of Euclidean spaces and partitions of these subsets into well-shaped and uniformly sized convex cells. Like the closely related k-means clustering algorithm, it repeatedly finds the centroid of each set in the partition and then re-partitions the input according to which of these centroids is closest. In this setting, the mean operation is an integral over a region of space, and the nearest centroid operation results in Voronoi diagrams.

<span class="mw-page-title-main">3D rendering</span> Process of converting 3D scenes into 2D images

3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles.

Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated. Objects can even be recognized when they are partially obstructed from view. This task is still a challenge for computer vision systems. Many approaches to the task have been implemented over multiple decades.

<span class="mw-page-title-main">Simulated growth of plants</span>

The simulated growth of plants is a significant task in of systems biology and mathematical biology, which seeks to reproduce plant morphology with computer software. Electronic trees (e-trees) usually use L-systems to simulate growth. L-systems are very important in the field of complexity science and A-life. A universally accepted system for describing changes in plant morphology at the cellular or modular level has yet to be devised. The most widely implemented tree-generating algorithms are described in the papers "Creation and Rendering of Realistic Trees", and Real-Time Tree Rendering

<span class="mw-page-title-main">Reservoir modeling</span>

In the oil and gas industry, reservoir modeling involves the construction of a computer model of a petroleum reservoir, for the purposes of improving estimation of reserves and making decisions regarding the development of the field, predicting future production, placing additional wells and evaluating alternative reservoir management scenarios.

<span class="mw-page-title-main">Depth map</span> Image also containing data on distances of objects from the camera

In 3D computer graphics and computer vision, a depth map is an image or image channel that contains information relating to the distance of the surfaces of scene objects from a viewpoint. The term is related to depth buffer, Z-buffer, Z-buffering, and Z-depth. The "Z" in these latter terms relates to a convention that the central axis of view of a camera is in the direction of the camera's Z axis, and not to the absolute Z axis of a scene.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

This is a glossary of terms relating to computer graphics.

<span class="mw-page-title-main">NIAflow</span>

NIAflow is simulation software for mineral processing plants. Based on a flowsheet interface, it calculates the material flow through a variety of processing machinery.

<span class="mw-page-title-main">Neural architecture search</span> Machine learning-powered structure design

Neural architecture search (NAS) is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning. NAS has been used to design networks that are on par or outperform hand-designed architectures. Methods for NAS can be categorized according to the search space, search strategy and performance estimation strategy used:

References

  1. Walter, M. (December 1998). Integration of Complex Shapes and Natural Patterns (Ph.D. thesis). University of British Columbia. CiteSeerX   10.1.1.89.5497 .
  2. Walter, M.; Fournier, A.; Reimers, M. (June 1998). "Clonal mosaic model for the synthesis of mammalian coat patterns". Proceedings of Graphics Interface 1998. pp. 82–91. CiteSeerX   10.1.1.6.1013 .
  3. M.Walter, A.Fournier, and D.Menevaux. 2001. Integrating shape and pattern in mammalian models. Proceedings of SIGGRAPH 2001 (August), 317-326.