MTA SZTAKI Laboratory of Parallel and Distributed Systems

Last updated

The Laboratory of Parallel and Distributed Systems (LPDS), as a department of MTA SZTAKI, is a research laboratory in distributed grid and cloud technologies. LPDS is a founding member of the Hungarian Grid Competence Centre, the Hungarian National Grid Initiative, and the Hungarian OpenNebula Community, and also coordinates several European grid/cloud projects.

Contents

LPDS laboratory, in cooperation with other departments of MTA SZTAKI, was involved in the development of the SZTAKI Cloud and takes part in many cloud-based projects. The LPDS cloud research is focusing on the field of Infrastructure as a Service (IaaS)-based cloud systems to make the previously evolved products and services of LPDS available for cloud-based execution in a scalable and transparent way.

The home of LPDS Lpds building.jpg
The home of LPDS

Main research areas

Products

gUSE (grid and cloud user support environment) is an open source science gateway framework that enables users access to grid and cloud infrastructures. It has been developed to support a large variety of user communities. It provides a general-purpose, workflow-oriented graphical user interface to create and run workflows on various Distributed Computing Infrastructures including clusters, grids, desktop grids, and clouds. The gUSE framework can be used by National Grid Initiatives (NGIs) to support small user communities that cannot afford to develop their own customized science gateway.

P-GRADE Portal is a Liferay technology-based web portal of gUSE. It can be accessed via major modern web browsers like Chrome, Firefox, etc. It supports the development and submission of distributed applications executed on the computational resources of various distributed computing infrastructures (DCIs) including clusters, service grids, desktop grids, and clouds.

Research

LPDS has participated in national and international grid and cloud research projects since 2000, with notable results in the area of grid/cloud resources and in the development of high-level user interfaces. In this field, an important result is the WS-PGRADE/gUSE (used in several European grid), made for accessing grid and cloud systems through a portal in a convenient and user-friendly way.

Additionally, LPDS participates in Big data management and storage within the field of agricultural research.

LPDS Training Room Lpds training.jpg
LPDS Training Room

Training

LPDS has played an active role in providing grid and cloud training in Europe and worldwide. Through national and international training, the Laboratory provides knowledge transfer and targets new users from the industry as well as from science. LPDS organized and hosted summer schools and training on the grid- and cloud-related topics since 2005. [1] [2]

Personnel

The Head of the LPDS is Prof. Dr. Péter Kacsuk. The Deputy Head of the LPDS is Dr. Robert Lovas. 1 DSc, 10 PhDs, and over 20 full or part-time members work in the laboratory.

See also

Related Research Articles

Grid computing is the use of widely distributed computer resources to reach a common goal. A computing grid can be thought of as a distributed system with non-interactive workloads that involve many files. Grid computing is distinguished from conventional high-performance computing systems such as cluster computing in that grid computers have each node set to perform a different task/application. Grid computers also tend to be more heterogeneous and geographically dispersed than cluster computers. Although a single grid can be dedicated to a particular application, commonly a grid is used for a variety of purposes. Grids are often constructed with general-purpose grid middleware software libraries. Grid sizes can be quite large.

HTCondor is an open-source high-throughput computing software framework for coarse-grained distributed parallelization of computationally intensive tasks. It can be used to manage workload on a dedicated cluster of computers, or to farm out work to idle desktop computers – so-called cycle scavenging. HTCondor runs on Linux, Unix, Mac OS X, FreeBSD, and Microsoft Windows operating systems. HTCondor can integrate both dedicated resources and non-dedicated desktop machines into one computing environment.

UNICORE (UNiform Interface to COmputing REsources) is a grid computing technology for resources such as supercomputers or cluster systems and information stored in databases. UNICORE was developed in two projects funded by the German ministry for education and research (BMBF). In European-funded projects UNICORE evolved to a middleware system used at several supercomputer centers. UNICORE served as a basis in other research projects. The UNICORE technology is open source under BSD licence and available at SourceForge.

<span class="mw-page-title-main">TeraGrid</span>

TeraGrid was an e-Science grid computing infrastructure combining resources at eleven partner sites. The project started in 2001 and operated from 2004 through 2011.

SZTAKI Desktop Grid (SzDG) was a BOINC project located in Hungary run by the Computer and Automation Research Institute (SZTAKI) of the Hungarian Academy of Sciences. It closed on June 21, 2018.

Cloud storage is a model of computer data storage in which data, said to be on "the cloud", is stored remotely in logical pools and is accessible to users over a network, typically the Internet. The physical storage spans multiple servers, and the physical environment is typically owned and managed by a cloud computing provider. These cloud storage providers are responsible for keeping the data available and accessible, and the physical environment secured, protected, and running. People and organizations buy or lease storage capacity from the providers to store user, organization, or application data.

CNGrid is the Chinese national high performance computing network supported by 863 Program.

gLite Grid computing software

gLite is a middleware computer software project for grid computing used by the CERN LHC experiments and other scientific domains. It was implemented by collaborative efforts of more than 80 people in 12 different academic and industrial research centers in Europe. gLite provides a framework for building applications tapping into distributed computing and storage resources across the Internet. The gLite services were adopted by more than 250 computing centres, and used by more than 15000 researchers in Europe and around the world.

Techila Distributed Computing Engine is a commercial grid computing software product. It speeds up simulation, analysis and other computational applications by enabling scalability across the IT resources in user's on-premises data center and in the user's own cloud account. Techila Distributed Computing Engine is developed and licensed by Techila Technologies Ltd, a privately held company headquartered in Tampere, Finland. The product is also available as an on-demand solution in Google Cloud Launcher, the online marketplace created and operated by Google. According to IDC, the solution enables organizations to create HPC infrastructure without the major capital investments and operating expenses required by new HPC hardware.

<span class="mw-page-title-main">P-GRADE Portal</span> Grid computing software

The P-GRADE Grid Portal was software for web portals to manage the life-cycle of executing a parallel application in grid computing. It was developed by the MTA SZTAKI Laboratory of Parallel and Distributed Systems (LPDS) at the Hungarian Academy of Sciences, Hungary, from around 2005 through 2010.

gUSE Grid computing framework

The Grid and Cloud User Support Environment (gUSE), also known as WS-PGRADE /gUSE, is an open source science gateway framework that enables users to access grid and cloud infrastructures. gUSE is developed by the Laboratory of Parallel and Distributed Systems (LPDS) at Institute for Computer Science and Control (SZTAKI) of the Hungarian Academy of Sciences.

<span class="mw-page-title-main">Péter Kacsuk</span> Hungarian computer scientist

Péter Kacsuk is a Hungarian computer scientist at MTA-SZTAKI, Budapest, Hungary.

<span class="mw-page-title-main">Róbert Lovas</span> Hungarian computer scientist

Róbert Lovas is a Hungarian computer scientist at SZTAKI, Budapest, Hungary.

<span class="mw-page-title-main">OpenNebula</span> Cloud-computing platform for managing heterogeneous distributed infrastructure

OpenNebula is an open source cloud computing platform for managing heterogeneous data center, public cloud and edge computing infrastructure resources. OpenNebula manages on-premise and remote virtual infrastructure to build private, public, or hybrid implementations of Infrastructure as a Service and multi-tenant Kubernetes deployments. The two primary uses of the OpenNebula platform are data center virtualization and cloud deployments based on the KVM hypervisor, LXD/LXC system containers, and AWS Firecracker microVMs. The platform is also capable of offering the cloud infrastructure necessary to operate a cloud on top of existing VMware infrastructure. In early June 2020, OpenNebula announced the release of a new Enterprise Edition for corporate users, along with a Community Edition. OpenNebula CE is free and open-source software, released under the Apache License version 2. OpenNebula CE comes with free access to patch releases containing critical bug fixes but with no access to the regular EE maintenance releases. Upgrades to the latest minor/major version is only available for CE users with non-commercial deployments or with significant open source contributions to the OpenNebula Community. OpenNebula EE is distributed under a closed-source license and requires a commercial Subscription.

<span class="mw-page-title-main">SLinCA@Home</span> BOINC based volunteer computing project researching LHC development

SLinCA@Home was a research project that uses Internet-connected computers to do research in fields such as physics and materials science.

The SHIWA project within grid computing was a project led by the LPDS of MTA Computer and Automation Research Institute. The project coordinator was Prof. Dr. Peter Kacsuk. It started on 1 July 2010 and lasted two years. SHIWA was supported by a grant from the European Commission's FP7 INFRASTRUCTURES-2010-2 call under grant agreement n°261585.

The Generic Grid-Grid (3G) Bridge is an open-source core job bridging component between different grid infrastructures. Its development started in 2008 within the CancerGrid and EDGeS projects. The aim was to create a generic bridge component that can be used in different grid interoperability scenarios. The 3G Bridge used within the EDGeS project that provides the core component of the Service Grid - Desktop Grid interoperability solution. 3G Bridge helps to connect user communities of different grid systems. For example, communities working on parameter sweep problems and using service grid infrastructures can migrate their applications to the more adequate desktop grid platform using the 3G Bridge technology, resulting in an accelerated research.

The Institute for Computer Science and Control is a Hungarian research institute in Budapest, founded in 1964.

Science gateways provide access to advanced resources for science and engineering researchers, educators, and students. Through streamlined, online, user-friendly interfaces, gateways combine a variety of cyberinfrastructure (CI) components in support of a community-specific set of tools, applications, and data collections.: In general, these specialized, shared resources are integrated as a Web portal, mobile app, or a suite of applications. Through science gateways, broad communities of researchers can access diverse resources which can save both time and money for themselves and their institutions. As listed below, functions and resources offered by science gateways include shared equipment and instruments, computational services, advanced software applications, collaboration capabilities, data repositories, and networks.

References

  1. "Summer School on Grid and Cloud Workflows and Gateways".
  2. "Cloud használat kezdőknek – SZTAKI Cloud".