Magritek

Last updated

Magritek is a scientific instrument company based in Wellington, New Zealand, and Aachen, Germany, that was established in 2004 and specialises in compact, portable and benchtop nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) products. The technology was originally developed to enable NMR measurements in Antarctica by scientists at Massey and Victoria Universities in New Zealand, including Dr Robin Dykstra. [1] [2] This was combined with compact, handheld NMR magnet technology developed by researchers at RWTH University in Aachen. [3]

Magritek is well known in New Zealand as an example of successful commercialisation of university developed IP [4] [5] and in 2010 the team behind the company won the Prime Minister's Science Prize [6] led by famous New Zealand scientist Sir Paul Callaghan. [7]

Magritek uses novel magnetic resonance techniques such as Earth's field NMR and Halbach array permanent magnets to create products such as the Spinsolve benchtop NMR spectrometer which enables both scientists and students to access high resolution NMR spectroscopy where they are working.

In 2009 they released a series of popular free videos [8] explaining and demonstrating the principles of NMR and MRI.

Related Research Articles

Magnetic resonance imaging Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from CT and PET scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

The first neuroimaging technique ever is the so-called 'human circulation balance' invented by Angelo Mosso in the 1880s and able to non-invasively measure the redistribution of blood during emotional and intellectual activity. Then, in the early 1900s, a technique called pneumoencephalography was set. This process involved draining the cerebrospinal fluid from around the brain and replacing it with air, altering the relative density of the brain and its surroundings, to cause it to show up better on an x-ray, and it was considered to be incredibly unsafe for patients. A form of magnetic resonance imaging (MRI) and computed tomography (CT) were developed in the 1970s and 1980s. The new MRI and CT technologies were considerably less harmful and are explained in greater detail below. Next came SPECT and PET scans, which allowed scientists to map brain function because, unlike MRI and CT, these scans could create more than just static images of the brain's structure. Learning from MRI, PET and SPECT scanning, scientists were able to develop functional MRI (fMRI) with abilities that opened the door to direct observation of cognitive activities.

Raymond Damadian

Raymond Vahan Damadian is an American physician of Armenian descent, medical practitioner, and inventor of the first MR Scanning Machine.

National High Magnetic Field Laboratory Magnetism research institute in the United States

The National High Magnetic Field Laboratory (MagLab) is a facility at Florida State University, the University of Florida, and Los Alamos National Laboratory in New Mexico, that performs magnetic field research in physics, biology, bioengineering, chemistry, geochemistry, biochemistry. It is the only such facility in the US, and is among twelve high magnetic facilities worldwide. The lab is supported by the National Science Foundation and the state of Florida, and works in collaboration with private industry.

Niobium–titanium (Nb-Ti) is an alloy of niobium and titanium, used industrially as a type II superconductor wire for superconducting magnets, normally as Nb-Ti fibres in an aluminium or copper matrix.

Fast low angle shot magnetic resonance imaging is a particular sequence of magnetic resonance imaging. It is a gradient echo sequence which combines a low-flip angle radio-frequency excitation of the nuclear magnetic resonance signal with a short repetition time. It is the generic form of steady-state free precession imaging.

Paul Callaghan

Sir Paul Terence Callaghan was a New Zealand physicist who, as the founding director of the MacDiarmid Institute for Advanced Materials and Nanotechnology at Victoria University of Wellington, held the position of Alan MacDiarmid Professor of Physical Sciences and was President of the International Society of Magnetic Resonance.

Low field NMR spans a range of different nuclear magnetic resonance (NMR) modalities, going from NMR conducted in permanent magnets, supporting magnetic fields of a few tesla (T), all the way down to zero field NMR, where the Earth's field is carefully shielded such that magnetic fields of nanotesla (nT) are achieved where nuclear spin precession is close to zero. In a broad sense, Low-field NMR is the branch of NMR that is not conducted in superconducting high-field magnets. Low field NMR also includes Earth's field NMR where simply the Earth's magnetic field is exploited to cause nuclear spin-precession which is detected. With magnetic fields on the order of μT and below magnetometers such as SQUIDs or atomic magnetometers are used as detectors. "Normal" high field NMR relies on the detection of spin-precession with inductive detection with a simple coil. However, this detection modality becomes less sensitive as the magnetic field and the associated frequencies decrease. Hence the push toward alternative detection methods at very low fields.

James Benjamin Martel is a physician, surgeon and scientist. He is former Chair of Surgery, Mercy San Juan Medical Center, former Chief of Ophthalmology, Otolaryngology (ENT), and Plastic Surgery, Sutter Roseville Medical Center. He is the former Director of Ophthalmology, Sutter General and Memorial Hospitals and Assistant Professor of Ophthalmology and Radiology, Johns Hopkins Medical School and Wilmer Ophthalmological Institute. He is currently Clinical Professor of Ophthalmology and Associate Dean of Graduate Medical Education in California Northstate University College of Medicine.

Nuclear magnetic resonance Spectroscopic technique relying on the energy of electrons

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).

Spinlock SRL

Spinlock is a technology based company specialized in the manufacture and development of nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) equipment.

Real-time MRI

Real-time magnetic resonance imaging (MRI) refers to the continuous monitoring ("filming") of moving objects in real time. Because MRI is based on time-consuming scanning of k-space, real-time MRI was possible only with low image quality or low temporal resolution. Using an iterative reconstruction algorithm these limitations have recently been removed: a new method for real-time MRI achieves a temporal resolution of 20 to 30 milliseconds for images with an in-plane resolution of 1.5 to 2.0 mm. Real-time MRI promises to add important information about diseases of the joints and the heart. In many cases MRI examinations may become easier and more comfortable for patients.

An Evans balance, also known as a Johnson-Matthey balance is a device for measuring magnetic susceptibility. Magnetic susceptibility is related to the force experienced by a substance in a magnetic field. Various practical devices are available for the measurement of susceptibility, which differ in the shape of the magnetic field and the way the force is measured.

A Benchtop nuclear magnetic resonance spectrometer refers to a Fourier transform nuclear magnetic resonance (FT-NMR) spectrometer that is significantly more compact and portable than the conventional equivalents, such that it is portable and can reside on a laboratory benchtop. This convenience comes from using permanent magnets, which have a lower magnetic field and decreased sensitivity compared to the much larger and more expensive cryogen cooled superconducting NMR magnets. Instead of requiring dedicated infrastructure, rooms and extensive installations these benchtop instruments can be placed directly on the bench in a lab and moved as necessary. These spectrometers offer improved workflow, even for novice users, as they are simpler and easy to use. They differ from relaxometers in that they can be used to measure high resolution NMR spectra and are not limited to the determination of relaxation or diffusion parameters.

Nanalysis Scientific Corp. is a scientific instrument manufacturer based in Calgary, AB, Canada. Established in 2009, Nanalysis specializes in the production of compact Nuclear Magnetic Resonance (NMR) spectroscopic instrumentation. As a new public company it is trading on the TSX Venture Exchange (TSXV) under the ticker symbol NSCI since June 2019, and later on the Frankfurt Stock Exchange (FRA) under the ticker symbol 1N1.

Narayanan Chandrakumar is an Indian chemical physicist and a professor of chemistry at the Indian Institute of Technology, Madras. He is the founder of the first Nuclear magnetic resonance (NMR) laboratory in India and is known for developing a new technique for NMR imaging and diffusion measurements. He is an elected fellow of the Indian National Science Academy and the Indian Academy of Sciences The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1996, for his contributions to chemical sciences.

The history of magnetic resonance imaging (MRI) includes the work of many researchers who contributed to the discovery of nuclear magnetic resonance (NMR) and described the underlying physics of magnetic resonance imaging, starting early in the twentieth century. MR imaging was invented by Paul C. Lauterbur who developed a mechanism to encode spatial information into an NMR signal using magnetic field gradients in September 1971; he published the theory behind it in March 1973. The factors leading to image contrast had been described nearly 20 years earlier by physician and scientist Erik Odeblad and Gunnar Lindström. Among many other researchers in the late 1970s and 1980s, Peter Mansfield further refined the techniques used in MR image acquisition and processing, and in 2003 he and Lauterbur were awarded the Nobel Prize in Physiology or Medicine for their contributions to the development of MRI. The first clinical MRI scanners were installed in the early 1980s and significant development of the technology followed in the decades since, leading to its widespread use in medicine today.

Lucio Frydman Israeli researcher

Lucio Frydman is an Argentine chemist whose research focuses on magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR) and solid-state NMR. He was awarded the 2000 Günther Laukien Prize and the 2013 Russell Varian Prize. He is Professor and Head of the Department of Chemical and Biological Physics at the Weizmann Institute of Science in Israel and Chief Scientist in Chemistry and Biology at the US National High Magnetic Field Laboratory in Tallahassee, Florida. He is a fellow of the International Society of Magnetic Resonance and the Editor-in-Chief of the Journal of Magnetic Resonance.

Timothy Haskell New Zealand scientist

Timothy George Haskell is a New Zealand scientist.

Jeffrey Allen Reimer is an American chemist, academic, author and researcher. He is the C. Judson King Endowed Professor, a Warren and Katharine Schlinger Distinguished Professor and the Chair of the Chemical and Biomolecular Engineering Department at University of California, Berkeley.

References

  1. P.T. Callaghan, C.D. Eccles and J.D. Seymour. An Earth's field NMR apparatus suitable for Pulsed Gradient Spin Echo measurements of self-diffusion under Antarctic conditions, Rev.Sci Instr. 68, 4263-4270 (1997)
  2. "Archived copy". Archived from the original on 2013-08-01. Retrieved 2013-06-12.{{cite web}}: CS1 maint: archived copy as title (link)
  3. Blümich B, Blümler P, Eidmann G, Guthausen A, Haken R, Schmitz U, Saito K, Zimmer G., Magn Reson Imaging. 1998 Jun-Jul;16(5-6):479-84.
  4. "New Zealand Research Commercialisation Success Stories - KiwiNet".
  5. "The Learning Hub | Television New Zealand | Entertainment | TV One, TV2". Archived from the original on 2016-03-04.
  6. "Archived copy". Archived from the original on 2013-06-13. Retrieved 2013-06-12.{{cite web}}: CS1 maint: archived copy as title (link)
  7. "Archived copy". Archived from the original on 2013-03-03. Retrieved 2013-06-12.{{cite web}}: CS1 maint: archived copy as title (link)
  8. Introductory NMR & MRI