Marginal conditional stochastic dominance

Last updated

In finance, marginal conditional stochastic dominance is a condition under which a portfolio can be improved in the eyes of all risk-averse investors by incrementally moving funds out of one asset (or one sub-group of the portfolio's assets) and into another. [1] [2] [3] Each risk-averse investor is assumed to maximize the expected value of an increasing, concave von Neumann-Morgenstern utility function. All such investors prefer portfolio B over portfolio A if the portfolio return of B is second-order stochastically dominant over that of A; roughly speaking this means that the density function of A's return can be formed from that of B's return by pushing some of the probability mass of B's return to the left (which is disliked by all increasing utility functions) and then spreading out some of the density mass (which is disliked by all concave utility functions).

If a portfolio A is marginally conditionally stochastically dominated by some incrementally different portfolio B, then it is said to be inefficient in the sense that it is not the optimal portfolio for anyone. Note that this context of portfolio optimization is not limited to situations in which mean-variance analysis applies.

The presence of marginal conditional stochastic dominance is sufficient, but not necessary, for a portfolio to be inefficient. This is because marginal conditional stochastic dominance only considers incremental portfolio changes involving two sub-groups of assets—one whose holdings are decreased and one whose holdings are increased. It is possible for an inefficient portfolio to not be second-order stochastically dominated by any such one-for-one shift of funds, and yet to by dominated by a shift of funds involving three or more sub-groups of assets. [4]

Testing

Yitzhaki and Mayshar [5] presented a linear programming-based approach to testing for portfolio inefficiency which works even when the necessary conditional of marginal conditional stochastic dominance is not met. Other similar tests have also been developed. [6] [7] [8] [9]

Related Research Articles

<span class="mw-page-title-main">Capital asset pricing model</span> Model used in finance

In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio.

<span class="mw-page-title-main">Risk aversion</span> Economics theory

In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome.

Market risk is the risk of losses in positions arising from movements in market variables like prices and volatility. There is no unique classification as each classification may refer to different aspects of market risk. Nevertheless, the most commonly used types of market risk are:

In economics and finance, risk neutral preferences are preferences that are neither risk averse nor risk seeking. A risk neutral party's decisions are not affected by the degree of uncertainty in a set of outcomes, so a risk neutral party is indifferent between choices with equal expected payoffs even if one choice is riskier.

Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversification in investing, the idea that owning different kinds of financial assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be assessed by itself, but by how it contributes to a portfolio's overall risk and return. The variance of return is used as a measure of risk, because it is tractable when assets are combined into portfolios. Often, the historical variance and covariance of returns is used as a proxy for the forward-looking versions of these quantities, but other, more sophisticated methods are available.

In finance, arbitrage pricing theory (APT) is a multi-factor model for asset pricing which relates various macro-economic (systematic) risk variables to the pricing of financial assets. Proposed by economist Stephen Ross in 1976, it is widely believed to be an improved alternative to its predecessor, the capital asset pricing model (CAPM). APT is founded upon the law of one price, which suggests that within an equilibrium market, rational investors will implement arbitrage such that the equilibrium price is eventually realised. As such, APT argues that when opportunities for arbitrage are exhausted in a given period, then the expected return of an asset is a linear function of various factors or theoretical market indices, where sensitivities of each factor is represented by a factor-specific beta coefficient or factor loading. Consequently, it provides traders with an indication of ‘true’ asset value and enables exploitation of market discrepancies via arbitrage. The linear factor model structure of the APT is used as the basis for evaluating asset allocation, the performance of managed funds as well as the calculation of cost of capital. Furthermore, the newer APT model is more dynamic being utilised in more theoretical application than the preceding CAPM model. A 1986 article written by Gregory Connor and Robert Korajczyk, utilised the APT framework and applied it to portfolio performance measurement suggesting that the Jensen coefficient is an acceptable measurement of portfolio performance.

Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance.

In the fields of actuarial science and financial economics there are a number of ways that risk can be defined; to clarify the concept theoreticians have described a number of properties that a risk measure might or might not have. A coherent risk measure is a function that satisfies properties of monotonicity, sub-additivity, homogeneity, and translational invariance.

The following outline is provided as an overview of and topical guide to finance:

Consumption smoothing is an economic concept for the practice of optimizing a person's standard of living through an appropriate balance between savings and consumption over time. An optimal consumption rate should be relatively similar at each stage of a person's life rather than fluctuate wildly. Luxurious consumption at an old age does not compensate for an impoverished existence at other stages in one's life.

Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either discrete time or continuous time.

Goals-Based Investing or Goal-Driven Investing is the use of financial markets to fund goals within a specified period of time. Traditional portfolio construction balances expected portfolio variance with return and uses a risk aversion metric to select the optimal mix of investments. By contrast, GBI optimizes an investment mix to minimize the probability of failing to achieve a minimum wealth level within a set period of time.

Portfolio optimization is the process of selecting an optimal portfolio, out of a set of considered portfolios, according to some objective. The objective typically maximizes factors such as expected return, and minimizes costs like financial risk, resulting in a multi-objective optimization problem. Factors being considered may range from tangible to intangible.

In decision theory, economics, and finance, a two-moment decision model is a model that describes or prescribes the process of making decisions in a context in which the decision-maker is faced with random variables whose realizations cannot be known in advance, and in which choices are made based on knowledge of two moments of those random variables. The two moments are almost always the mean—that is, the expected value, which is the first moment about zero—and the variance, which is the second moment about the mean.

In finance, economics, and decision theory, hyperbolic absolute risk aversion (HARA) refers to a type of risk aversion that is particularly convenient to model mathematically and to obtain empirical predictions from. It refers specifically to a property of von Neumann–Morgenstern utility functions, which are typically functions of final wealth, and which describe a decision-maker's degree of satisfaction with the outcome for wealth. The final outcome for wealth is affected both by random variables and by decisions. Decision-makers are assumed to make their decisions so as to maximize the expected value of the utility function.

Quantitative analysis is the use of mathematical and statistical methods in finance and investment management. Those working in the field are quantitative analysts (quants). Quants tend to specialize in specific areas which may include derivative structuring or pricing, risk management, investment management and other related finance occupations. The occupation is similar to those in industrial mathematics in other industries. The process usually consists of searching vast databases for patterns, such as correlations among liquid assets or price-movement patterns.

In portfolio theory, a mutual fund separation theorem, mutual fund theorem, or separation theorem is a theorem stating that, under certain conditions, any investor's optimal portfolio can be constructed by holding each of certain mutual funds in appropriate ratios, where the number of mutual funds is smaller than the number of individual assets in the portfolio. Here a mutual fund refers to any specified benchmark portfolio of the available assets. There are two advantages of having a mutual fund theorem. First, if the relevant conditions are met, it may be easier for an investor to purchase a smaller number of mutual funds than to purchase a larger number of assets individually. Second, from a theoretical and empirical standpoint, if it can be assumed that the relevant conditions are indeed satisfied, then implications for the functioning of asset markets can be derived and tested.

Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets.

Intertemporal portfolio choice is the process of allocating one's investable wealth to various assets, especially financial assets, repeatedly over time, in such a way as to optimize some criterion. The set of asset proportions at any time defines a portfolio. Since the returns on almost all assets are not fully predictable, the criterion has to take financial risk into account. Typically the criterion is the expected value of some concave function of the value of the portfolio after a certain number of time periods—that is, the expected utility of final wealth. Alternatively, it may be a function of the various levels of goods and services consumption that are attained by withdrawing some funds from the portfolio after each time period.

In finance, the Markowitz model ─ put forward by Harry Markowitz in 1952 ─ is a portfolio optimization model; it assists in the selection of the most efficient portfolio by analyzing various possible portfolios of the given securities. Here, by choosing securities that do not 'move' exactly together, the HM model shows investors how to reduce their risk. The HM model is also called mean-variance model due to the fact that it is based on expected returns (mean) and the standard deviation (variance) of the various portfolios. It is foundational to Modern portfolio theory.

References

  1. Shalit, H., and Yitzhaki, S. "Marginal conditional stochastic dominance," Management Science 40, 1994, 670-684.
  2. Chow, K. V., "Marginal stochastic dominance, statistical inference, and measuring portfolio performance," Journal of Financial Research 24, 2001, 289-307.
  3. Post, T., "On the dual test for SSD efficiency: with an application to momentum investment strategies," European Journal of Operational Research 185(3), 2008, 1564-1573.
  4. Zhang, Duo, "A demonstration of the non-necessity of marginal conditional stochastic dominance for portfolio inefficiency," The Quarterly Review of Economics and Finance 49, May 2009, 417-423.
  5. Yitzhaki, Shlomo, and Mayshar, Joram. "Characterizing Efficient Portfolios", SSRN Working Paper,
  6. Post, T., "Empirical tests for stochastic dominance efficiency," Journal of Finance 58(5), 2003, 1905-1932.
  7. Kuosmanen, T., "Efficient diversification according to stochastic dominance criteria," Management Science 50, 2004, 1390-1406.
  8. Post, T., and Levy, H., "Does risk seeking drive stock prices? A stochastic dominance analysis of aggregate investor preferences and beliefs," Review of Financial Studies 18, 2005, 925-953.
  9. Post, T., and Versijp, P., "Multivariate tests for stochastic dominance efficiency of a given portfolio," Journal of Financial and Quantitative Analysis 42(2), 2007, 489-516.