Marianne E. Bronner | |
---|---|
Alma mater | Brown University (Sc.B., 1975) Johns Hopkins University (PhD., 1979) |
Organization | California Institute of Technology |
Marianne Bronner is a developmental biologist who currently serves as Edward B. Lewis Professor of Biology and an executive officer for Neurobiology at the California Institute of Technology. Her most notable work includes her research on the neural crest. [1] Bronner's research focuses on studying the cellular events behind the migration, differentiation, and formation of neural crest cells. [2] She currently directs her own laboratory at the California Institute of Technology called the Bronner Laboratory, and she has authored over 400 articles in her field. [2] [3]
When Bronner was 4, her family fled Hungary. [1] They moved to the United States after staying in Austria for six months. Both of her parents were survivors of the Holocaust. [1]
Bronner attended Brown University for her undergraduate studies. [1] After she graduated from Brown University, she decided to apply to the biophysics graduate school program at Johns Hopkins University. [1] Once there, she decided to take an undergraduate course in developmental biology. [4] From there, she continued to specialise in the field. [1]
Once Bronner graduated from Johns Hopkins University with her Ph.D., she began teaching at the University of California, Irvine. [1] Bronner spent 16 years at the University of California, Irvine and eventually became the associate director of the Developmental Biology Center. [1] In 1996, Bronner left the University of California, Irvine and moved her laboratory to the California Institute of Technology. In 2001, Bronner became Chair of the Faculty at Caltech, being the first woman to hold the position. [4] She held that position for two years. [4]
Bronner has been directing a laboratory at Caltech since she first arrived at the university. [4] The lab focuses most of its research on how neural crest cells arise and the factors involving their migration from the neural tube to different positions in the embryo in addition to the evolution of these cells. [4] One project focuses on characterizing the structures involved with neural crest cell movements. [5] Another project in the lab focuses on comparing the mechanisms behind neural crest invasive behavior and the mechanisms that allow for adult derivatives to become migratory and invasive. [5]
The zebrafish is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to India and South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio. It is also found in private ponds.
Morphogenesis is the biological process that causes a cell, tissue or organism to develop its shape. It is one of three fundamental aspects of developmental biology along with the control of tissue growth and patterning of cellular differentiation.
In the developing chordate, the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural fold become elevated, and ultimately the folds meet and coalesce in the middle line and convert the groove into the closed neural tube. In humans, neural tube closure usually occurs by the fourth week of pregnancy.
Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm. The blastula is a hollow sphere of cells known as blastomeres surrounding an inner fluid-filled cavity called the blastocoel. Embryonic development begins with a sperm fertilizing an egg cell to become a zygote, which undergoes many cleavages to develop into a ball of cells called a morula. Only when the blastocoel is formed does the early embryo become a blastula. The blastula precedes the formation of the gastrula in which the germ layers of the embryo form.
The olfactory epithelium is a specialized epithelial tissue inside the nasal cavity that is involved in smell. In humans, it measures 5 cm2 (0.78 sq in) and lies on the roof of the nasal cavity about 7 cm (2.8 in) above and behind the nostrils. The olfactory epithelium is the part of the olfactory system directly responsible for detecting odors.
Neurulation refers to the folding process in vertebrate embryos, which includes the transformation of the neural plate into the neural tube. The embryo at this stage is termed the neurula.
Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ions to function, hence their name. Cell-cell adhesion is mediated by extracellular cadherin domains, whereas the intracellular cytoplasmic tail associates with numerous adaptors and signaling proteins, collectively referred to as the cadherin adhesome.
The neural plate is a key developmental structure that serves as the basis for the nervous system. Cranial to the primitive node of the embryonic primitive streak, ectodermal tissue thickens and flattens to become the neural plate. The region anterior to the primitive node can be generally referred to as the neural plate. Cells take on a columnar appearance in the process as they continue to lengthen and narrow. The ends of the neural plate, known as the neural folds, push the ends of the plate up and together, folding into the neural tube, a structure critical to brain and spinal cord development. This process as a whole is termed primary neurulation.
Neural crest cells are a temporary group of cells that arise from the embryonic ectoderm germ layer, and in turn give rise to a diverse cell lineage—including melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia.
The neural fold is a structure that arises during neurulation in the embryonic development of both birds and mammals among other organisms. This structure is associated with primary neurulation, meaning that it forms by the coming together of tissue layers, rather than a clustering, and subsequent hollowing out, of individual cells. In humans, the neural folds are responsible for the formation of the anterior end of the neural tube. The neural folds are derived from the neural plate, a preliminary structure consisting of elongated ectoderm cells. The folds give rise to neural crest cells, as well as bringing about the formation of the neural tube.
Mesenchyme is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo.
Cadherin EGF LAG seven-pass G-type receptor 1 also known as flamingo homolog 2 or cadherin family member 9 is a protein that in humans is encoded by the CELSR1 gene.
Zinc finger protein SNAI2 is a transcription factor that in humans is encoded by the SNAI2 gene. It promotes the differentiation and migration of certain cells and has roles in initiating gastrulation.
Nodal homolog is a secretory protein that in humans is encoded by the NODAL gene which is located on chromosome 10q22.1. It belongs to the transforming growth factor beta superfamily. Like many other members of this superfamily it is involved in cell differentiation in early embryogenesis, playing a key role in signal transfer from the primitive node, in the anterior primitive streak, to lateral plate mesoderm (LPM).
Cadherin-1 or Epithelial cadherin(E-cadherin), is a protein that in humans is encoded by the CDH1 gene. Mutations are correlated with gastric, breast, colorectal, thyroid, and ovarian cancers. CDH1 has also been designated as CD324. It is a tumor suppressor gene.
Neural crest cells are multipotent cells required for the development of cells, tissues and organ systems. A subpopulation of neural crest cells are the cardiac neural crest complex. This complex refers to the cells found amongst the midotic placode and somite 3 destined to undergo epithelial-mesenchymal transformation and migration to the heart via pharyngeal arches 3, 4 and 6.
Collective cell migration describes the movements of group of cells and the emergence of collective behavior from cell-environment interactions and cell-cell communication. Collective cell migration is an essential process in the lives of multicellular organisms, e.g. embryonic development, wound healing and cancer spreading (metastasis). Cells can migrate as a cohesive group or have transient cell-cell adhesion sites. They can also migrate in different modes like sheets, strands, tubes, and clusters. While single-cell migration has been extensively studied, collective cell migration is a relatively new field with applications in preventing birth defects or dysfunction of embryos. It may improve cancer treatment by enabling doctors to prevent tumors from spreading and forming new tumors.
Carole LaBonne is a Developmental and Stem Cell Biologist at Northwestern University. She is the Erastus O. Haven Professor of Life Sciences, and Chair of the Department of Molecular Biosciences.
Grainyhead-like genes are a family of highly conserved transcription factors that are functionally and structurally homologous across a large number of vertebrate and invertebrate species. For an estimated 100 million years or more, this genetic family has been evolving alongside life to fine tune the regulation of epithelial barrier integrity during development, fine-tuning epithelial barrier establishment, maintenance and subsequent homeostasis. The three main orthologues, Grainyhead-like 1, 2 and 3, regulate numerous genetic pathways within different organisms and perform analogous roles between them, ranging from neural tube closure, wound healing, establishment of the craniofacial skeleton and repair of the epithelium. When Grainyhead-like genes are impaired, due to genetic mutations in embryogenesis, it will cause the organism to present with developmental defects that largely affect ectodermal tissues in which they are expressed. These subsequent congenital disorders, including cleft lip and exencephaly, vary greatly in their severity and impact on the quality of life for the affected individual. There is much still to learn about the function of these genes and the more complex roles of Grainyhead-like genes are yet to be discovered.
Linda Zimmerman Holland is a research biologist at Scripps Institution of Oceanography known for her work examining the evolution of vertebrates.