Markov theorem

Last updated
Braid closure Alexander closure of a braid.svg
Braid closure

In mathematics the Markov theorem gives necessary and sufficient conditions for two braids to have closures that are equivalent knots or links. The conditions are stated in terms of the group structures on braids.

Braids are algebraic objects described by diagrams; the relation to topology is given by Alexander's theorem which states that every knot or link in three-dimensional Euclidean space is the closure of a braid. The Markov theorem, proved by Russian mathematician Andrei Andreevich Markov Jr. [1] describes the elementary moves generating the equivalence relation on braids given by the equivalence of their closures.

More precisely Markov's theorem can be stated as follows: [2] [3] given two braids represented by elements in the braid groups , their closures are equivalent links if and only if can be obtained from applying to a sequence of the following operations:

  1. conjugating in ;
  2. replacing by (here are the standard generators of the braid groups; geometrically this amounts to adding a strand to the right of the braid diagram and twisting it once with the (previously) last strand);
  3. the inverse of the previous operation (if with replace with ).

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Root system</span> Geometric arrangements of points, foundational to Lie theory

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory. Finally, root systems are important for their own sake, as in spectral graph theory.

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

<span class="mw-page-title-main">Braid group</span> Group whose operation is a composition of braids

In mathematics, the braid group on n strands, also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids, and whose group operation is composition of braids. Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids ; in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation ; and in monodromy invariants of algebraic geometry.

In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four.

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable.

In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert in order to solve various counting problems of projective geometry and, as such, is viewed as part of enumerative geometry. Giving it a more rigorous foundation was the aim of Hilbert's 15th problem. It is related to several more modern concepts, such as characteristic classes, and both its algorithmic aspects and applications remain of current interest. The term Schubert calculus is sometimes used to mean the enumerative geometry of linear subspaces of a vector space, which is roughly equivalent to describing the cohomology ring of Grassmannians. Sometimes it is used to mean the more general enumerative geometry of algebraic varieties that are homogenous spaces of simple Lie groups. Even more generally, Schubert calculus is sometimes understood as encompassing the study of analogous questions in generalized cohomology theories.

In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x as

String diagrams are a formal graphical language for representing morphisms in monoidal categories, or more generally 2-cells in 2-categories. They are a prominent tool in applied category theory. When interpreted in the monoidal category of vector spaces and linear maps with the tensor product, string diagrams are called tensor networks or Penrose graphical notation. This has led to the development of categorical quantum mechanics where the axioms of quantum theory are expressed in the language of monoidal categories.

In knot theory, a virtual knot is a generalization of knots in 3-dimensional Euclidean space, R3, to knots in thickened surfaces modulo an equivalence relation called stabilization/destabilization. Here is required to be closed and oriented. Virtual knots were first introduced by Kauffman (1999).

In computer science, a trace is a set of strings, wherein certain letters in the string are allowed to commute, but others are not. It generalizes the concept of a string, by not forcing the letters to always be in a fixed order, but allowing certain reshufflings to take place. Traces were introduced by Pierre Cartier and Dominique Foata in 1969 to give a combinatorial proof of MacMahon's master theorem. Traces are used in theories of concurrent computation, where commuting letters stand for portions of a job that can execute independently of one another, while non-commuting letters stand for locks, synchronization points or thread joins.

In mathematics the Burau representation is a representation of the braid groups, named after and originally studied by the German mathematician Werner Burau during the 1930s. The Burau representation has two common and near-equivalent formulations, the reduced and unreduced Burau representations.

In the mathematical area of braid theory, the Dehornoy order is a left-invariant total order on the braid group, found by Patrick Dehornoy. Dehornoy's original discovery of the order on the braid group used huge cardinals, but there are now several more elementary constructions of it.

<span class="mw-page-title-main">Suffix automaton</span> Deterministic finite automaton accepting set of all suffixes of particular string

In computer science, a suffix automaton is an efficient data structure for representing the substring index of a given string which allows the storage, processing, and retrieval of compressed information about all its substrings. The suffix automaton of a string is the smallest directed acyclic graph with a dedicated initial vertex and a set of "final" vertices, such that paths from the initial vertex to final vertices represent the suffixes of the string.

Algebraic Eraser (AE) is an anonymous key agreement protocol that allows two parties, each having an AE public–private key pair, to establish a shared secret over an insecure channel. This shared secret may be directly used as a key, or to derive another key that can then be used to encrypt subsequent communications using a symmetric key cipher. Algebraic Eraser was developed by Iris Anshel, Michael Anshel, Dorian Goldfeld and Stephane Lemieux. SecureRF owns patents covering the protocol and unsuccessfully attempted to standardize the protocol as part of ISO/IEC 29167-20, a standard for securing radio-frequency identification devices and wireless sensor networks.

Pure inductive logic (PIL) is the area of mathematical logic concerned with the philosophical and mathematical foundations of probabilistic inductive reasoning. It combines classical predicate logic and probability theory. Probability values are assigned to sentences of a first-order relational language to represent degrees of belief that should be held by a rational agent. Conditional probability values represent degrees of belief based on the assumption of some received evidence.

References

  1. A. A. Markov Jr., Über die freie Äquivalenz der geschlossenen Zöpfe
  2. Birman, Joan (1974). Braids, Links, and Mapping Class Groups. Annals of Mathematics Studies. Vol. 82. Princeton University Press., Theorem 2.3 on p. 51
  3. Kauffman, Louis (1991). Knots and Physics. World Scientific., p.95