Mars Radiation Environment Experiment

Last updated
MARIE, designed to measure radiation, started malfunctioning shortly after a series of strong solar flares occurred in Autumn of 2003 Mars Radiation Environment Experiment.jpg
MARIE, designed to measure radiation, started malfunctioning shortly after a series of strong solar flares occurred in Autumn of 2003

The Martian Radiation Experiment, or MARIE was designed to measure the radiation environment of Mars using an energetic particle spectrometer as part of the science mission of the 2001 Mars Odyssey spacecraft (launched on April 7, 2001). It was led by NASA's Johnson Space Center and the science investigation was designed to characterize aspects of the radiation environment both on the way to Mars and while it was in the Martian orbit. [1]

Contents

Since space radiation presents an extreme hazard to crews of interplanetary missions the experiment was an attempt to predict anticipated radiation doses that would be experienced by future astronauts and it helped determine possible effects of Martian radiation on human beings.

Space radiation comes from cosmic rays emitted by our local star, the Sun, and from stars beyond the Solar System as well. Space radiation can trigger cancer and cause damage to the central nervous system. Similar instruments are flown on the Space Shuttles and on the International Space Station (ISS), but none have ever flown outside Earth's protective magnetosphere, which blocks much of this radiation from reaching the surface of our planet.

In the autumn of 2003 after a series of particularly strong solar flares MARIE started malfunctioning, probably as a result of being exposed to the solar flare's intense blast of particle radiation. The instrument was never restored to working order.

Operation

A spectrometer inside the instrument measured the energy from two sources of space radiation: galactic cosmic rays (GCR) and solar energetic particles (SEP). As the spacecraft orbited the red planet, the spectrometer swept through the sky and measured the radiation field.

The instrument, with a 68-degree field of view, was designed to collect data continuously during Mars Odyssey's cruise from Earth to Mars. It stored large amounts of data for downlink, and operated throughout the entire science mission.

MARIE specifications

MARIE Orbiter-marie.jpg
MARIE

The Martian Radiation Environment Experiment weighs 3.3 kilograms (7.3 pounds) and uses 7 watts of power. It measures 29.4 x 23.2 x 10.8 centimeters (11.6 x 9.1 x 4.3 inches).

Results

MARIEdoserates.nasa.png

The diagram above indicates that a main radiation exposure is about 20 mrad/d resulting in annual dose of about 73 mGy/a. However occasional solar proton events (SPEs) produce a hundred and more times higher doses (see the diagram above). SPEs, which were observed by MARIE, were not observed by sensors near Earth confirming that SPEs are directional. Thus the average in-orbit doses were about 400–500mSv/a.

JPL reported that MARIE-measured radiation levels were two to three times greater than that at the International Space Station (which is 100–200 mSv/a). [2] The levels at the Martian surface might be closer to the level at the ISS due to atmospheric shielding – ignoring the effect of thermal neutrons induced by GCR.

Related Research Articles

<i>2001 Mars Odyssey</i> 2001 NASA orbiter studying the geology and hydrology of Mars

2001 Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment. It is hoped that the data Odyssey obtains will help answer the question of whether life existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Curiosity rover, and previously the Mars Exploration Rovers and Phoenix lander, to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of his and Stanley Kubrick's 1968 film 2001: A Space Odyssey.

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<span class="mw-page-title-main">Laboratory for Atmospheric and Space Physics</span> Research organization at the University of Colorado Boulder

The Laboratory for Atmospheric and Space Physics (LASP) is a research organization at the University of Colorado Boulder. LASP is a research institute with over one hundred research scientists ranging in fields from solar influences, to Earth's and other planetary atmospherics processes, space weather, space plasma and dusty plasma physics. LASP has advanced technical capabilities specializing in designing, building, and operating spacecraft and spacecraft instruments.

<i>Ulysses</i> (spacecraft) 1990 robotic space probe; studied the Sun from a near-polar orbit

Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.

<span class="mw-page-title-main">Van Allen radiation belt</span> Zone of energetic charged particles around the planet Earth

A Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others may be temporarily created. The belts are named after James Van Allen, who is credited with their discovery. Earth's two main belts extend from an altitude of about 640 to 58,000 km above the surface, in which region radiation levels vary. Most of the particles that form the belts are thought to come from solar wind and other particles by cosmic rays. By trapping the solar wind, the magnetic field deflects those energetic particles and protects the atmosphere from destruction.

<i>Nozomi</i> (spacecraft) Failed Mars orbiter

Nozomi was a Mars orbiter that failed to reach Mars due to electrical failures. The mission was terminated on December 31, 2003.

<span class="mw-page-title-main">Mars 96</span> Failed Mars mission

Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.

<span class="mw-page-title-main">Gamma-ray spectrometer</span> Instrument for measuring gamma radiation

A gamma-ray spectrometer (GRS) is an instrument for measuring the distribution of the intensity of gamma radiation versus the energy of each photon. The study and analysis of gamma-ray spectra for scientific and technical use is called gamma spectroscopy, and gamma-ray spectrometers are the instruments which observe and collect such data. Because the energy of each photon of EM radiation is proportional to its frequency, gamma rays have sufficient energy that they are typically observed by counting individual photons.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

<span class="mw-page-title-main">Colonization of Mars</span> Proposed concepts for human settlements on Mars

Colonization or settlement of Mars is the theoretical human migration and long-term human establishment of Mars. The prospect has garnered interest from public space agencies and private corporations and has been extensively explored in science fiction writing, film, and art.

<span class="mw-page-title-main">Russian Space Research Institute</span>

The Russian Space Research Institute is the leading organization of the Russian Academy of Sciences on space exploration to benefit fundamental science. It was formerly known as the Space Research Institute of the USSR Academy of Sciences. It is usually known by the shorter name Space Research Institute and especially by the initialism IKI.

Astronautical hygiene evaluates, and mitigates, hazards and health risks to those working in low-gravity environments. The discipline of astronautical hygiene includes such topics as the use and maintenance of life support systems, the risks of the extravehicular activity, the risks of exposure to chemicals or radiation, the characterization of hazards, human factor issues, and the development of risk management strategies. Astronautical hygiene works side by side with space medicine to ensure that astronauts are healthy and safe when working in space.

<span class="mw-page-title-main">Mawrth Vallis</span> Valley on Mars

Mawrth Vallis is a valley on Mars, located in the Oxia Palus quadrangle at 22.3°N, 343.5°E with an elevation approximately two kilometers below datum. Situated between the southern highlands and northern lowlands, the valley is a channel formed by massive flooding which occurred in Mars’ ancient past. It is an ancient water outflow channel with light-colored clay-rich rocks.

Health threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS).

<span class="mw-page-title-main">OSO 7</span>

OSO 7 or Orbiting Solar Observatory 7, before launch known as OSO H is the seventh in the series of American Orbiting Solar Observatory satellites launched by NASA between 1962 and 1975. OSO 7 was launched from Cape Kennedy on 29 September 1971 by a Delta N rocket into a 33.1° inclination, low-Earth orbit, and re-entered the Earth's atmosphere on 9 July 1974. It was built by the Ball Brothers Research Corporation (BBRC), now known as Ball Aerospace, in Boulder Colorado.

<span class="mw-page-title-main">Radiation assessment detector</span>

The Radiation Assessment Detector (RAD) is an instrument mounted on the Mars Science Laboratory'sCuriosity rover. It was the first of ten instruments to be turned on during the mission.

HZE ions are the high-energy nuclei component of galactic cosmic rays (GCRs) which have an electric charge of +3 e or greater – that is, they must be the nucleii of heavier elements than hydrogen or helium.

<span class="mw-page-title-main">BioSentinel</span> US experimental astrobiology research satellite

BioSentinel is a lowcost CubeSat spacecraft on a astrobiology mission that will use budding yeast to detect, measure, and compare the impact of deep space radiation on DNA repair over long time beyond low Earth orbit.

The Fine-Resolution Epithermal Neutron Detector (FREND) is a neutron detector that is part of the instrument payload on board the Trace Gas Orbiter (TGO), launched to Mars in March 2016. This instrument is currently mapping hydrogen levels to a maximum depth of 1 m beneath the Martian surface, thus revealing shallow water ice distribution. This instrument has an improved resolution of 7.5 times over the one Russia contributed to NASA's 2001 Mars Odyssey orbiter.

References

  1. Francis A. Cucinotta, Martian Radiation Environment Experiment – MARIE. NASA: JSC, last update October 27, 2003. (archive)
  2. "Radiation Dose-Equivalent: International Space Station Compared to Mars Orbit". JPL. 2002-12-07. Retrieved 30 September 2012.