In set theory, a branch of mathematical logic, Martin's maximum, introduced by Foreman, Magidor & Shelah (1988) and named after Donald Martin, is a generalization of the proper forcing axiom, itself a generalization of Martin's axiom. It represents the broadest class of forcings for which a forcing axiom is consistent.
Martin's maximum states that if D is a collection of dense subsets of a notion of forcing that preserves stationary subsets of ω1, then there is a D-generic filter. Forcing with a ccc notion of forcing preserves stationary subsets of ω1, thus extends . If (P,≤) is not a stationary set preserving notion of forcing, i.e., there is a stationary subset of ω1, which becomes nonstationary when forcing with (P,≤), then there is a collection D of dense subsets of (P,≤), such that there is no D-generic filter. This is why is called the maximal extension of Martin's axiom.
The existence of a supercompact cardinal implies the consistency of Martin's maximum. [1] The proof uses Shelah's theories of semiproper forcing and iteration with revised countable supports.
implies that the value of the continuum is [2] and that the ideal of nonstationary sets on ω1 is -saturated. [3] It further implies stationary reflection, i.e., if S is a stationary subset of some regular cardinal κ ≥ ω2 and every element of S has countable cofinality, then there is an ordinal α < κ such that S ∩ α is stationary in α. In fact, S contains a closed subset of order type ω1.
In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states that
there is no set whose cardinality is strictly between that of the integers and the real numbers,
In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.
In set theory, a Woodin cardinal is a cardinal number such that for all functions
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Semitic letter aleph.
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.
In mathematics, and particularly in axiomatic set theory, the diamond principle◊ is a combinatorial principle introduced by Ronald Jensen in Jensen (1972) that holds in the constructible universe and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility implies the existence of a Suslin tree.
In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, , behave roughly like . The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments.
In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets, and is analogous to a set of non-zero measure in measure theory. There are at least three closely related notions of stationary set, depending on whether one is looking at subsets of an ordinal, or subsets of something of given cardinality, or a powerset.
In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).
In model theory, a branch of mathematical logic, the spectrum of a theory is given by the number of isomorphism classes of models in various cardinalities. More precisely, for any complete theory T in a language we write I(T, κ) for the number of models of T (up to isomorphism) of cardinality κ. The spectrum problem is to describe the possible behaviors of I(T, κ) as a function of κ. It has been almost completely solved for the case of a countable theory T.
In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.
In set theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).
In set theory, Ω-logic is an infinitary logic and deductive system proposed by W. Hugh Woodin (1999) as part of an attempt to generalize the theory of determinacy of pointclasses to cover the structure . Just as the axiom of projective determinacy yields a canonical theory of , he sought to find axioms that would give a canonical theory for the larger structure. The theory he developed involves a controversial argument that the continuum hypothesis is false.
Menachem Magidor is an Israeli mathematician who specializes in mathematical logic, in particular set theory. He served as president of the Hebrew University of Jerusalem, was president of the Association for Symbolic Logic from 1996 to 1998, and is currently the president of the Division for Logic, Methodology and Philosophy of Science and Technology of the International Union for History and Philosophy of Science. In 2016 he was elected an honorary foreign member of the American Academy of Arts and Sciences. In 2018 he received the Solomon Bublick Award.
In model theory, a discipline within mathematical logic, an abstract elementary class, or AEC for short, is a class of models with a partial order similar to the relation of an elementary substructure of an elementary class in first-order model theory. They were introduced by Saharon Shelah.
The open coloring axiom is an axiom about coloring edges of a graph whose vertices are a subset of the real numbers: two different versions were introduced by Abraham, Rubin & Shelah (1985) and by Todorčević (1989).
This is a glossary of set theory.
In mathematical set theory, Baumgartner's axiom (BA) can be one of three different axioms introduced by James Earl Baumgartner.