Martin Glennie

Last updated

Martin J. Glennie is emeritus professor of immunochemistry (antibodies) at the University of Southampton, United Kingdom. [1]

Contents

Career

Glennie earned his BSc and PhD at the University of Southampton, and is the current Head of the Cancer Sciences Unit there. [1] Glennie is on the editorial board of the scientific journal mAbs (monoclonal antibodies) published by the Taylor & Francis Group. [2]

Public media interest

The clinical trial of an anti-CD40 monoclonal antibody chiLOB7/4 developed in Glennie's laboratory was reported by The Daily Telegraph in August 2013. [3] Glennie stressed that “Ipilimumab works by taking the brakes off part of the immune system called T cells, while our compound revs up the T cells – it is like giving them a caffeine hit.". [3]

Personal life

Glennie is a keen angler, winning second prize (Lupa cup) in the Baltimore Deep Sea angling Festival 2014, South West Ireland. [4]

Related Research Articles

<span class="mw-page-title-main">Immunosuppressive drug</span> Drug that inhibits activity of immune system

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.

The cluster of differentiation is a protocol used for the identification and investigation of cell surface molecules providing targets for immunophenotyping of cells. In terms of physiology, CD molecules can act in numerous ways, often acting as receptors or ligands important to the cell. A signal cascade is usually initiated, altering the behavior of the cell. Some CD proteins do not play a role in cell signaling, but have other functions, such as cell adhesion. CD for humans is numbered up to 371.

<span class="mw-page-title-main">Monoclonal antibody</span> Antibodies from clones of the same blood cell

A monoclonal antibody is an antibody produced from a cell lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.

<span class="mw-page-title-main">Hybridoma technology</span> Method for producing lots of identical antibodies

Hybridoma technology is a method for producing large numbers of identical antibodies. This process starts by injecting a mouse with an antigen that provokes an immune response. A type of white blood cell, the B cell, produces antibodies that bind to the injected antigen. These antibody producing B-cells are then harvested from the mouse and, in turn, fused with immortal B cell cancer cells, a myeloma, to produce a hybrid cell line called a hybridoma, which has both the antibody-producing ability of the B-cell and the longevity and reproductivity of the myeloma. The hybridomas can be grown in culture, each culture starting with one viable hybridoma cell, producing cultures each of which consists of genetically identical hybridomas which produce one antibody per culture (monoclonal) rather than mixtures of different antibodies (polyclonal). The myeloma cell line that is used in this process is selected for its ability to grow in tissue culture and for an absence of antibody synthesis. In contrast to polyclonal antibodies, which are mixtures of many different antibody molecules, the monoclonal antibodies produced by each hybridoma line are all chemically identical.

<span class="mw-page-title-main">Rituximab</span> Pharmaceutical drug

Rituximab, sold under the brand name Rituxan among others, is a monoclonal antibody medication used to treat certain autoimmune diseases and types of cancer. It is used for non-Hodgkin lymphoma, chronic lymphocytic leukemia, rheumatoid arthritis, granulomatosis with polyangiitis, idiopathic thrombocytopenic purpura, pemphigus vulgaris, myasthenia gravis and Epstein–Barr virus-positive mucocutaneous ulcers. It is given by slow injection into a vein. Biosimilars of Rituxan include Blitzima, Riabni, Ritemvia, Rituenza, Rixathon, Ruxience, and Truxima.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:

<span class="mw-page-title-main">Antibody-dependent cellular cytotoxicity</span> Cell-mediated killing of other cells mediated by antibodies

Antibody-dependent cellular cytotoxicity (ADCC), also referred to as antibody-dependent cell-mediated cytotoxicity, is a mechanism of cell-mediated immune defense whereby an effector cell of the immune system kills a target cell, whose membrane-surface antigens have been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection.

The nomenclature of monoclonal antibodies is a naming scheme for assigning generic, or nonproprietary, names to monoclonal antibodies. An antibody is a protein that is produced in B cells and used by the immune system of humans and other vertebrate animals to identify a specific foreign object like a bacterium or a virus. Monoclonal antibodies are those that were produced in identical cells, often artificially, and so share the same target object. They have a wide range of applications including medical uses.

<span class="mw-page-title-main">Monoclonal antibody therapy</span> Form of immunotherapy

Monoclonal antibody therapy is a form of immunotherapy that uses monoclonal antibodies (mAbs) to bind monospecifically to certain cells or proteins. The objective is that this treatment will stimulate the patient's immune system to attack those cells. Alternatively, in radioimmunotherapy a radioactive dose localizes a target cell line, delivering lethal chemical doses. Antibodies have been used to bind to molecules involved in T-cell regulation to remove inhibitory pathways that block T-cell responses. This is known as immune checkpoint therapy.

<span class="mw-page-title-main">Ipilimumab</span> Pharmaceutical drug

Ipilimumab, sold under the brand name Yervoy, is a monoclonal antibody medication that works to activate the immune system by targeting CTLA-4, a protein receptor that downregulates the immune system.

A bispecific monoclonal antibody is an artificial protein that can simultaneously bind to two different types of antigen or two different epitopes on the same antigen. Naturally occurring antibodies typically only target one antigen. BsAbs can be manufactured in several structural formats. BsAbs can be designed to recruit and activate immune cells, to interfere with receptor signaling and inactivate signaling ligands, and to force association of protein complexes. BsAbs have been explored for cancer immunotherapy, drug delivery, and Alzeimer's disease.

<span class="mw-page-title-main">Symphogen</span>

Symphogen is a biotechnology company located in Copenhagen, Denmark that develops protein drugs based on recombinant monoclonal antibody mixtures. These drugs are different from the polyclonal antibodies, as each antibody in the mixture is produced from one carefully selected clone. Their three main areas of therapeutic research are immunoglobulin replacement, cancer, and infectious diseases. The company was founded in 2000 and has patents on a drug discovery platform called Symplex and a drug manufacturing platform called Sympress. By 2009, ten drugs were being developed with rozrolimupab (Sym001) being the lead product. Laboratoires Servier acquired Symphogen in 2020.

<span class="mw-page-title-main">Trifunctional antibody</span>

A trifunctional antibody is a monoclonal antibody with binding sites for two different antigens, typically CD3 and a tumor antigen, making it a type of bispecific monoclonal antibody. In addition, its intact Fc-part can bind to an Fc receptor on accessory cells like conventional monospecific antibodies. The net effect is that this type of drug links T cells and monocytes/macrophages, natural killer cells, dendritic cells or other Fc receptor expressing cells to the tumor cells, leading to their destruction.

<span class="mw-page-title-main">Chemically linked Fab</span>

Two chemically linked fragments antigen-binding form an artificial antibody that binds to two different antigens, making it a type of bispecific antibody. They are fragments antigen-binding of two different monoclonal antibodies and are linked by chemical means like a thioether. Typically, one of the Fabs binds to a tumour antigen and the other to a protein on the surface of an immune cell, for example an Fc receptor on a macrophage. In this way, tumour cells are attached to immune cells, which destroy them.

Vera Steinberger Byers is a Ph.D. immunologist who currently practices as a consultant in Incline Village, Nevada and was formerly a professor at the University of California San Francisco, before changing affiliations to University of Nottingham, where she helped conduct research on tumor immunology, later moving on to immunodermatology. While at UCSF, she helped develop a monoclonal antibody for use as an anticancer treatment, specifically against osteogenic sarcoma, though it was originally used against graft-versus-host disease. While at the University of Nottingham, she published some papers on the regulation of the immune response to urushiol in poison ivy/poison oak, also using a monoclonal antibody. Her work as a medical toxicologist pertaining to trichloroethylene features in the book A Civil Action. According to her testimony in the autism omnibus trial, she spent three years working at Immunex, where she worked on the anti-arthritis drug Enbrel. However, the special master in these proceedings wrote, "...there was no record at the FDA of Dr. Byers playing in any role in the Enbrel licensing application," to which Byers responded that "the information did not make a difference." The special master also wrote, "[Byers'] insistence that it was acceptable to use adult norms to measure the immune function of infants and young children was, frankly, incredible. Her testimony in this trial pertained to the alleged mechanism by which the measles virus from the MMR vaccine, in combination with thimerosal, caused Michelle Cedillo to suffer from a "dysregulated immune system." Dr. Byers formerly served on the editorial board of the journal Cancer Immunology, Immunotherapy, and has published some research in this journal.

<span class="mw-page-title-main">Immune checkpoint</span> Regulators of the immune system

Immune checkpoints are regulators of the immune system. These pathways are crucial for self-tolerance, which prevents the immune system from attacking cells indiscriminately. However, some cancers can protect themselves from attack by stimulating immune checkpoint targets.

<span class="mw-page-title-main">Michel C. Nussenzweig</span>

Michel C. Nussenzweig is a professor and head of the Laboratory of Molecular Immunology at The Rockefeller University and a Howard Hughes Medical Institute investigator. He is a member of both the US National Academy of Medicine and the US National Academy of Sciences.

Passive antibody therapy, also called serum therapy, is a subtype of passive immunotherapy that administers antibodies to target and kill pathogens or cancer cells. It is designed to draw support from foreign antibodies that are donated from a person, extracted from animals, or made in the laboratory to elicit an immune response instead of relying on the innate immune system to fight disease. It has a long history from the 18th century for treating infectious diseases and is now a common cancer treatment. The mechanism of actions include: antagonistic and agonistic reaction, complement-dependent cytotoxicity (CDC), and antibody-dependent cellular cytotoxicity (ADCC).

References

  1. 1 2 "University of Southampton Faculty of Medicine Staff page". University of Southampton. Retrieved 11 December 2014.
  2. "mAbs editorial board" . Retrieved 11 December 2014.
  3. 1 2 Gray, Richard (2013-08-11). "New Immunity Boosting Drug Helps Body Kill Cancer". Archived from the original on 2013-08-14. Retrieved 11 December 2014.
  4. "Baltimore Deep Sea Angling Festival 2014" . Retrieved 11 December 2014.