MassCREST

Last updated

MassCREST stands for Massachusetts Center for Renewable Energy Science and Technology at the University of Massachusetts Amherst. It brings together complementary expertise in molecular design and synthesis, physical characterizations, device fabrications and theoretical modeling from at least five different departments within UMass Amherst.

Using their expertise in soft materials and in soft-hard material interfaces, MassCREST researchers are focusing on developing efficient solar cells and fuel cells, producing hydrogen from water using enzymes and developing catalysts for the conversion of biomass to hydrocarbon fuels.

Related Research Articles

<span class="mw-page-title-main">Fuel cell</span> Device that converts the chemical energy from a fuel into electricity

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

<span class="mw-page-title-main">Energy storage</span> Captured energy for usage at a later time

Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun that is harnessed using a range of technologies

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture.

<span class="mw-page-title-main">Argonne National Laboratory</span> Science and engineering research national laboratory in Lemont, IL, United States

Argonne National Laboratory is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

A hydrogen vehicle is a vehicle that uses hydrogen fuel for motive power. Hydrogen vehicles include hydrogen-fueled space rockets, as well as ships and aircraft. Power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by burning hydrogen in an internal combustion engine.

<span class="mw-page-title-main">University of Massachusetts Amherst</span> Public university in Massachusetts, U.S.

The University of Massachusetts Amherst is a public research university in Amherst, Massachusetts and the sole public land-grant university in Commonwealth of Massachusetts. Founded in 1863 as an agricultural college, it is the flagship and the largest campus in the University of Massachusetts system, as well as the first established. It is also a member of the Five College Consortium, along with four other colleges in the Pioneer Valley: Amherst College, Smith College, Mount Holyoke College, and Hampshire College.

<span class="mw-page-title-main">Pyrolysis</span> Thermal decomposition of materials at elevated temperatures in an inert atmosphere

The pyrolysis process is the thermal decomposition of materials at elevated temperatures in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements pyro "fire", "heat", "fever" and lysis "separating".

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Energy development</span> Diverse methods of energy production

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

The hydrogen economy is using hydrogen to decarbonize economic sectors which are hard to electrify, essentially, the "hard-to-abate" sectors such as cement, steel, long-haul transport etc. In order to phase out fossil fuels and limit climate change, hydrogen can be created from water using renewable sources such as wind and solar, and its combustion only releases water vapor to the atmosphere.

<span class="mw-page-title-main">Fuel cell vehicle</span> Vehicle that uses a fuel cell to power its electric motor

A fuel cell vehicle (FCV) or fuel cell electric vehicle (FCEV) is an electric vehicle that uses a fuel cell, sometimes in combination with a small battery or supercapacitor, to power its onboard electric motor. Fuel cells in vehicles generate electricity generally using oxygen from the air and compressed hydrogen. Most fuel cell vehicles are classified as zero-emissions vehicles that emit only water and heat. As compared with internal combustion vehicles, hydrogen vehicles centralize pollutants at the site of the hydrogen production, where hydrogen is typically derived from reformed natural gas. Transporting and storing hydrogen may also create pollutants.

In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or gravimetric energy density.

<span class="mw-page-title-main">Hydrogen station</span> Storage or filling station for hydrogen

A hydrogen station is a storage or filling station for Hydrogen. The hydrogen is dispensed by weight. There are two filling pressures in common use. H70 or 700 bar, and the older standard H35 or 350 bar. As of 2021 around 550 filling stations were available worldwide.

Micro combined heat and power, micro-CHP, µCHP or mCHP is an extension of the idea of cogeneration to the single/multi family home or small office building in the range of up to 50 kW. Usual technologies for the production of heat and power in one common process are e.g. internal combustion engines, micro gas turbines, stirling engines or fuel cells.

Micropower describes the use of very small electric generators and prime movers or devices to convert heat or motion to electricity, for use close to the generator. The generator is typically integrated with microelectronic devices and produces "several watts of power or less." These devices offer the promise of a power source for portable electronic devices which is lighter weight and has a longer operating time than batteries.

<span class="mw-page-title-main">Hydrail</span>

In transportation, hydrail is the generic term describing all forms of rail vehicles, large or small, which use on-board hydrogen fuel as a source of energy to power the traction motors, or the auxiliaries, or both. Hydrail vehicles use the chemical energy of hydrogen for propulsion, either by burning hydrogen in a hydrogen internal combustion engine, or by reacting hydrogen with oxygen in a fuel cell to run electric motors. Widespread use of hydrogen for fueling rail transportation is a basic element of the proposed hydrogen economy. The term has been used by research scholars and technicians around the world.

<span class="mw-page-title-main">Reticulated foam</span> Porous, low-density solid foam

Reticulated foam is a very porous, low density solid foam. 'Reticulated' means like a net. Reticulated foams are extremely open foams i.e. there are few, if any, intact bubbles or cell windows. In contrast, the foam formed by soap bubbles is composed solely of intact bubbles. In a reticulated foam only the lineal boundaries where the bubbles meet remain.

Prospective Outlook on Long-term Energy Systems (POLES) is a world simulation model for the energy sector that runs on the Vensim software. It is a techno-economic model with endogenous projection of energy prices, a complete accounting of energy demand and supply of numerous energy vectors and associated technologies, and a carbon dioxide and other greenhouse gases emissions module.

<span class="mw-page-title-main">Energy in Ohio</span> Overview of the production, consumption, import and export of energy and electricity in Ohio

The energy sector of Ohio consists of thousands of companies and cities representing the oil, natural gas, coal, solar, wind energy, fuel cell, biofuel, geothermal, hydroelectric, and other related industries. Oil and natural gas accounts for $3.1 billion annually in sales while ethanol generates $750 million. Toledo is a national hub in solar cell manufacturing, and the state has significant production of fuel cells. In 2008, the state led the country in alternative energy manufacturing according to Site Selection Magazine, while the natural gas industry has experienced growth due to the expansion of shale gas.

<span class="mw-page-title-main">Intelligent Energy</span>

Intelligent Energy is a fuel cell engineering company focused on the development and commercialisation of its proton-exchange membrane fuel cell technologies for a range of markets including automotive, stationary power and UAVs. It is headquartered in the UK, with offices and representation in the US, Japan, South Korea, and China.