Mass interconnect

Last updated

Mass interconnect systems act as the connector interface between test instruments (PXI, VXI, LXI, GPIB, SCXI, & PCI) and devices/units under test (D/UUT) and are most often used in defense, aerospace, automotive, manufacturing, and other applications. By mating a receiver on the tester side with an interchangeable test adapter (ITA) on the UUT, a mass interconnect enables the entire system to mate together at one time. Mass interconnect systems are available in multiple sizes and configurations to accommodate virtually any testing requirement.

Companies that manufacture mass interconnects include VPC and MAC Panel Company.

Sample VPC Mass interconnect system - click to enlarge see also a Sample from MAC Panel here Diagram of Mass InterConnect System.jpg
Sample VPC Mass interconnect system – click to enlarge see also a Sample from MAC Panel here

System definitions

Instrumentation: PXI, VXI, LXI, GPIB, SCXI, and PCI Electronic equipment that generates or analyzes I/O.
Cable Assemblies and Receiver Patchcords : Modules connect to the instrument-specific connector(s) and are also available in PCB adapter configurations that accept COTS (commercial off-the-shelf) cable assemblies. Receiver patchcords allow discrete wiring.
Receiver: A rugged interconnect mechanism to house connector modules, patchcords, cable assemblies, and PCB adapters for connection to test instrumentation. Mates with the ITA frame or connectors.
Receiver Modules: Present multiple configurations of signal, power, RF/coaxial, pneumatic, vacuum, thermocouple, or fiber optic in varying densities.
Pull thru adapters or Direct Access Kits (DAKs) : Modular units that connect the instrument card to the Mass interconnect receiver module in a single removable unit usually using a PCB to eliminate crosstalk issues and reduce signal interference.
Interchangeable Test Adapter (ITA): Mates to the receiver and houses modules, PCB adapters, cable assemblies, and patchcords for connection to the UUT.
ITA Modules: Connect to the Receiver modules in the corresponding configurations and is the final connection before engaging the test instrument to the UUT.
ITA Patchcords : Supply the user a contact with pre-terminated wire in a single or double-ended format to connect the ITA to the UUT in a customized arrangement.
ITA Enclosures: Protect and provide strain relief for wiring. Enclosures offer a mounting surface for UUT accessories such as edge-card adapters and other connectors.
D/UUT: Device under test or unit under test – The object undergoing the test

Related Research Articles

Backplane

A backplane is a group of electrical connectors in parallel with each other, so that each pin of each connector is linked to the same relative pin of all the other connectors, forming a computer bus. It is used as a backbone to connect several printed circuit boards together to make up a complete computer system. Backplanes commonly use a printed circuit board, but wire-wrapped backplanes have also been used in minicomputers and high-reliability applications.

Eurocard (printed circuit board) Standard for PCBs which may be interconnected in a rack mounted chassis

Eurocard is a European standard format for printed circuit board (PCB) cards that can be plugged together into a standard chassis which, in turn, can be mounted in a 19-inch rack. The chassis consists of a series of slotted card guides on the top and bottom, into which the cards are slid so they stand on end, like books on a shelf. At the spine of each card is one or more connectors which plug into mating connectors on a backplane that closes the rear of the chassis.

Motherboard Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

PCI Express Computer expansion bus standard

PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.

Electrical connector Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit. Most electrical connectors have a gender – i.e. the male component, called a plug, connects to the female component, or socket. The connection may be removable, require a tool for assembly and removal, or serve as a permanent electrical joint between two points. An adapter can be used to join dissimilar connectors.

IEEE-488 General Purpose Interface Bus (GPIB) specification

IEEE 488 is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard as HP-IB. It subsequently became the subject of several standards, and is generically known as GPIB.

Single-board computer Computer whose components are on a single printed circuit board

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer. Single-board computers are commonly made as demonstration or development systems, for educational systems, or for use as embedded computer controllers. Many types of home computers or portable computers integrate all their functions onto a single printed circuit board.

Electronic test equipment

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

LAN eXtensions for Instrumentation (LXI) is a standard developed by the LXI Consortium, a consortium that maintains the LXI specification and promotes the LXI Standard. The LXI standard defines the communication protocols for instrumentation and data acquisition systems using Ethernet. Ethernet is a ubiquitous communication standard providing a versatile interface, the LXI standard describes how to use the Ethernet standards for test and measurement applications in a way that promotes simple interoperability between instruments. The LXI Consortium ensures LXI compliant instrumentation developed by various vendors works together with no communication or setup issues. The LXI Consortium ensures that the LXI standard complements other test and measurement control systems, such as GPIB and PXI systems.

Pinout

In electronics, a pinout is a cross-reference between the contacts, or pins, of an electrical connector or electronic component, and their functions. "Pinout" now supersedes the term "basing diagram" that was the standard terminology used by the manufacturers of vacuum tubes and the RMA. The RMA started its standardization in 1934, collecting and correlating tube data for registration at what was to become the EIA. The EIA now has many sectors reporting to it, and sets what are known as EIA standards where all registered pinouts and registered jacks can be found.

VME eXtensions for Instrumentation

VME eXtensions for instrumentation bus refers to standards for automated test based upon VMEbus. VXI defines additional bus lines for timing and triggering as well as mechanical requirements and standard protocols for configuration, message-based communication, multi-chassis extension, and other features. In 2004, the 2eVME extension was added to the VXI bus specification, giving it a maximum data rate of 160 MB/s.

Automatic test equipment Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

Structured cabling Telecommunications cabling infrastructure

In telecommunications, structured cabling is building or campus cabling infrastructure that consists of a number of standardized smaller elements called subsystems. Structured cabling components include twisted pair and optical cabling, patch panels and patch cables.

PCI eXtensions for Instrumentation

PCI eXtensions for Instrumentation (PXI) is one of several modular electronic instrumentation platforms in current use. These platforms are used as a basis for building electronic test equipment, automation systems, and modular laboratory instruments. PXI is based on industry-Industry-standard computer buses and permits flexibility in building equipment. Often modules are fitted with custom software to manage the system.

Modular connector Electrical connector commonly used in telephone and computer networks

A modular connector is a type of electrical connector for cords and cables of electronic devices and appliances, such as in computer networking, telecommunication equipment, and audio headsets.

CPU card

A CPU card is a printed circuit board (PCB) that contains the central processing unit (CPU) of a computer. CPU cards are specified by CPU clock frequency and bus type as well as other features and applications built into the card.

M-Modules are a mezzanine standard mainly used in industrial computers. Being mezzanines, they are always plugged on a carrier printed circuit board (PCB) that supports this format. The modules communicate with their carrier over a dedicated bus, and can have all kinds of special functions.

Bustec is a company that designs and manufactures instrumentation for high-performance data acquisition and instrument control. The company's products serve applications that include engine testing, automotive and missile testing, wind tunnel data acquisition and control, acoustics, vibration applications, aircraft component testing and more. Headquarters is located in Shannon, Co. Clare, Ireland.

M.2 Standard for miniature computer expansion cards

M.2, pronounced m dot two and formerly known as the Next Generation Form Factor (NGFF), is a specification for internally mounted computer expansion cards and associated connectors. M.2 replaces the mSATA standard, which uses the PCI Express Mini Card physical card layout and connectors. Employing a more flexible physical specification, M.2 allows different module widths and lengths, which, paired with the availability of more advanced interfacing features, makes M.2 more suitable than mSATA in general for solid-state storage applications, particularly in smaller devices such as ultrabooks and tablets.

Modular crate electronics

Modular crate electronics are a general type of electronics and support infrastructure commonly used for trigger electronics and data acquisition in particle detectors. These types of electronics are common in such detectors because all the electronic pathways are made by discrete physical cables connecting together logic blocks on the fronts of modules. This allows circuits to be designed, built, tested, and deployed very quickly as an experiment is being put together. Then the modules can all be removed and used again when the experiment is done.

References