In mathematics, specifically in the field of group theory, the McKay conjecture is a conjecture of equality between the number of irreducible complex characters of degree not divisible by a prime number to that of the normalizer of a Sylow -subgroup. It is named after Canadian mathematician John McKay.
Suppose is a prime number, is a finite group, and is a Sylow -subgroup. Define where denotes the set of complex irreducible characters of the group . The McKay conjecture claims the equality
where is the normalizer of in .
In McKay's original papers on the subject, [1] [2] the statement was given for the prime and simple groups, but examples of computations of for odd primes or symmetric groups are mentioned. Marty Isaacs also checked the conjecture for the prime 2 and solvable groups [3] . The first appearance of the conjecture for arbitrary primes is in a paper by Jon L. Alperin giving also a version in block theory, now called the Alperin-McKay conjecture [4] .
In 2007, Marty Isaacs, Gunter Malle and Gabriel Navarro showed that the McKay conjecture reduces to the checking of a so-called inductive McKay condition for each finite simple group [5] [6] . This opens the door to a proof of the conjecture by using the classification of finite simple groups.
The paper of Isaacs-Malle-Navarro was also an inspiration for similar reductions for Alperin weight conjecture, its block version, the Alperin-McKay conjecture and Dade's conjecture.
The McKay conjecture for the prime 2 was proven by Gunter Malle and Britta Späth in 2016 [7] .
An important step in proving the inductive McKay condition for all simple groups is to determine the action of the group of automorphisms on the set for each finite quasisimple group . The solution has been announced by Späth [8] in the form of an -equivariant Jordan decomposition of characters for finite quasisimple groups of Lie type.
The McKay conjecture for all primes and all finite groups was announced by Marc Cabanes and Britta Späth in October 2023 in various conferences, a manuscript being available later in 2024 [9] .
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, it has a central series of finite length or its lower central series terminates with {1}.
In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.
In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.
In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers . This problem, first posed in the early 19th century, is unsolved.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.
In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.
In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.
In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ-adic cohomology with compact support, introduced by Pierre Deligne and George Lusztig.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects help glean properties and sometimes simplify calculations on more abstract theories.
In mathematics, a group is said to be almost simple if it contains a non-abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group A is almost simple if there is a (non-abelian) simple group S such that
In finite group theory, a p-stable group for an odd prime p is a finite group satisfying a technical condition introduced by Gorenstein and Walter in order to extend Thompson's uniqueness results in the odd order theorem to groups with dihedral Sylow 2-subgroups.
I. Martin "Marty" Isaacs is a group theorist and representation theorist and professor emeritus of mathematics at the University of Wisconsin–Madison. He currently lives in Berkeley, California and is an occasional participant on MathOverflow.
Gunter Malle is a German mathematician, specializing in group theory, representation theory of finite groups, and number theory.
The Brauer's Height Zero Conjecture is a conjecture in modular representation theory of finite groups relating the degrees of the complex irreducible characters in a Brauer block and the structure of its defect groups. It was formulated by Richard Brauer in 1955.
Gabriel Navarro Ortega is a Spanish mathematician specializing in group theory, and representation theory of finite groups. Currently he is a full professor at the Universitat de València.