Mean dimension

Last updated

In mathematics, the mean (topological) dimension of a topological dynamical system is a non-negative extended real number that is a measure of the complexity of the system. Mean dimension was first introduced in 1999 by Gromov. [1] Shortly after it was developed and studied systematically by Lindenstrauss and Weiss. [2] In particular they proved the following key fact: a system with finite topological entropy has zero mean dimension. For various topological dynamical systems with infinite topological entropy, the mean dimension can be calculated or at least bounded from below and above. This allows mean dimension to be used to distinguish between systems with infinite topological entropy. Mean dimension is also related to the problem of embedding topological  dynamical systems in shift spaces (over Euclidean cubes).

Contents

General definition

A topological dynamical system consists of a compact Hausdorff topological space and a continuous self-map . Let denote the collection of open finite covers of . For define its order by

An open finite cover refines , denoted , if for every , there is so that . Let

Note that in terms of this definition the Lebesgue covering dimension is defined by .

Let be open finite covers of . The join of and is the open finite cover by all sets of the form where , . Similarly one can define the join of any finite collection of open covers of .

The mean dimension is the non-negative extended real number:

where

Definition in the metric case

If the compact Hausdorff topological space is metrizable and is a compatible metric, an equivalent definition can be given. For , let be the minimal non-negative integer , such that there exists an open finite cover of by sets of diameter less than such that any distinct sets from this cover have empty intersection. Note that in terms of this definition the Lebesgue covering dimension is defined by . Let

The mean dimension is the non-negative extended real number:

Properties

Example

Let . Let and be the shift homeomorphism , then .

See also

Related Research Articles

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.

In statistics, the Gauss–Markov theorem states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal for the theorem to apply, nor do they need to be independent and identically distributed.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.

In mathematics, a universal space is a certain metric space that contains all metric spaces whose dimension is bounded by some fixed constant. A similar definition exists in topological dynamics.

Functional regression is a version of regression analysis when responses or covariates include functional data. Functional regression models can be classified into four types depending on whether the responses or covariates are functional or scalar: (i) scalar responses with functional covariates, (ii) functional responses with scalar covariates, (iii) functional responses with functional covariates, and (iv) scalar or functional responses with functional and scalar covariates. In addition, functional regression models can be linear, partially linear, or nonlinear. In particular, functional polynomial models, functional single and multiple index models and functional additive models are three special cases of functional nonlinear models.

In mathematics, the small boundary property is a property of certain topological dynamical systems. It is dynamical analog of the inductive definition of Lebesgue covering dimension zero.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

References

  1. Gromov, Misha (1999). "Topological invariants of dynamical systems and spaces of holomorphic maps I". Mathematical Physics, Analysis and Geometry. 2 (4): 323–415. doi: 10.1023/A:1009841100168 . S2CID   117100302.
  2. 1 2 Lindenstrauss, Elon; Weiss, Benjamin (2000-12-01). "Mean topological dimension". Israel Journal of Mathematics . 115 (1). p. 14: 1–24. CiteSeerX   10.1.1.30.3552 . doi: 10.1007/BF02810577 . ISSN   0021-2172.

What is Mean Dimension?